Abstract

A novel symmetric WDM-PON scheme with colorless ONU is proposed. The baseband 4-ASK Fast-OFDM signal is upconverted by an intermediate frequency carrier, reserving a frequency gap between the FOFDM signal and the optical carrier. After distributing different wavelengths to corresponding ONU by AWG, periodic BPFs are employed to extract the optical carriers for upstream transmission, achieving colorless ONUs. A WDM-PON system with 16 colorless ONUs is established, and 10-Gb/s symmetric transmission for each ONU is also realized. Experiment shows that the system tolerance to the intrachannel crosstalk is greatly improved when the crosstalk signal locates at relatively higher frequency band.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gutierrez, K. S. Kim, A. Fu-Tai1, L. G. Kazovsky, “SUCCESS-HPON: Migrating from TDM-PON to WDM-PON,” ECOC, 4801079 (2006).
  2. Y-B. Choi, S-J. Park, “The low cost Hybrid CWDM/DWDM-TDM-PON system for NEXT FTTH,” AOE, 5348730 (2008).
  3. F. J. Effenberger, “NG-PON: Enabling technologies for metro-access convergence,” Proc. SPIE 7621, 76210D, 76210D–7 (2010).
    [CrossRef]
  4. K. Iwatsuki and J-i. Kani, “Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units,” J. Opt. Commun. Netw. 1(4), (2009).
    [CrossRef]
  5. A. Chiuchiarelli, R. Proietti, M. Presi, P. Choudhury, Contestabile, iampiero, Ciaramella, Ernesto, “Symmetric 10 Gb/s WDM-PON based on a cross wavelength-reusing scheme to avoid rayleigh backscattering and maximize band usage,” LEOS, 555–556, (2009).
  6. Y. Gu, W-D. Zhong, F. Zhang, Z. Xu, C. Michie, “A carrier-reuse WDM-PON architecture with multicast/broadcast capability,” ICICS, 5397493, (2009).
  7. H-H. Cho, S-H. Lee, B-W. Kim, S-S. Lee, “A linear bus wavelength-reuse WDM-PON with simple add/drop nodes,” OECC, 5222107, (2009).
  8. E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
    [CrossRef]
  9. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection,” OFC (2009).
  10. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [CrossRef]
  11. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [CrossRef]
  12. J. Zhao and A. D. Ellis, “A Novel Optical Fast OFDM with Reduced Channel Spacing Equal to Half of the Symbol Rate Per Carrier,” OFC(2010).
  13. L. G. C. Cancela and J. J. O. Pires, “Impact of Intrachannel Crosstalk on the Performance of Direct-Detection DPSK Optical Systems,” QELS (2005).
  14. C. Lei, H. Chen, M. Chen, and S. Xie, “A high spectral efficiency optical OFDM scheme based on interleaved multiplexing,” Opt. Express 18(25), 26149–26154 (2010).
    [CrossRef] [PubMed]

2010 (4)

F. J. Effenberger, “NG-PON: Enabling technologies for metro-access convergence,” Proc. SPIE 7621, 76210D, 76210D–7 (2010).
[CrossRef]

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[CrossRef]

C. Lei, H. Chen, M. Chen, and S. Xie, “A high spectral efficiency optical OFDM scheme based on interleaved multiplexing,” Opt. Express 18(25), 26149–26154 (2010).
[CrossRef] [PubMed]

2009 (1)

K. Iwatsuki and J-i. Kani, “Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units,” J. Opt. Commun. Netw. 1(4), (2009).
[CrossRef]

2008 (1)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, H.

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, M.

Cvijetic, N.

Effenberger, F. J.

F. J. Effenberger, “NG-PON: Enabling technologies for metro-access convergence,” Proc. SPIE 7621, 76210D, 76210D–7 (2010).
[CrossRef]

Giacoumidis, E.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Hu, J.

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Iwatsuki, K.

K. Iwatsuki and J-i. Kani, “Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units,” J. Opt. Commun. Netw. 1(4), (2009).
[CrossRef]

Kani, J-i.

K. Iwatsuki and J-i. Kani, “Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units,” J. Opt. Commun. Netw. 1(4), (2009).
[CrossRef]

Lei, C.

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Tang, J. M.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Tsokanos, A.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Wang, T.

Wei, J. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Xie, S.

Yang, X. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Yu, J.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

IEEE Photon. J. (1)

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photon. J. 2(2), 130–140 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

K. Iwatsuki and J-i. Kani, “Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units,” J. Opt. Commun. Netw. 1(4), (2009).
[CrossRef]

Opt. Express (1)

Photon. Technol. Lett. (1)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Proc. SPIE (1)

F. J. Effenberger, “NG-PON: Enabling technologies for metro-access convergence,” Proc. SPIE 7621, 76210D, 76210D–7 (2010).
[CrossRef]

Other (8)

J. Zhao and A. D. Ellis, “A Novel Optical Fast OFDM with Reduced Channel Spacing Equal to Half of the Symbol Rate Per Carrier,” OFC(2010).

L. G. C. Cancela and J. J. O. Pires, “Impact of Intrachannel Crosstalk on the Performance of Direct-Detection DPSK Optical Systems,” QELS (2005).

A. Chiuchiarelli, R. Proietti, M. Presi, P. Choudhury, Contestabile, iampiero, Ciaramella, Ernesto, “Symmetric 10 Gb/s WDM-PON based on a cross wavelength-reusing scheme to avoid rayleigh backscattering and maximize band usage,” LEOS, 555–556, (2009).

Y. Gu, W-D. Zhong, F. Zhang, Z. Xu, C. Michie, “A carrier-reuse WDM-PON architecture with multicast/broadcast capability,” ICICS, 5397493, (2009).

H-H. Cho, S-H. Lee, B-W. Kim, S-S. Lee, “A linear bus wavelength-reuse WDM-PON with simple add/drop nodes,” OECC, 5222107, (2009).

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection,” OFC (2009).

D. Gutierrez, K. S. Kim, A. Fu-Tai1, L. G. Kazovsky, “SUCCESS-HPON: Migrating from TDM-PON to WDM-PON,” ECOC, 4801079 (2006).

Y-B. Choi, S-J. Park, “The low cost Hybrid CWDM/DWDM-TDM-PON system for NEXT FTTH,” AOE, 5348730 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The architecture of the proposed Fast-OFDM WDM-PON scheme with colorless ONU and symmetric transmission (OLT: optical line terminal, ONU: optical network unit, AWG: arrayed waveguide grating)

Fig. 2
Fig. 2

The impact of the residual intermediate frequency FOFDM signal on the upstream transmission performance. (a): The spectral of the filtered downstream signal and modulated upstream signal (DS: downstream, US: upstream), (b): Upstream BER under different residual upstream signal power

Fig. 3
Fig. 3

Experiment setup (ASK: Amplitude Shift Keying, BPF: Band Pass Filter, MZM: Mach-Zehnder Modulator, NRZ: non-return zero, BERT: bit error rate tester, SSMF: standard single mode fiber, EDFA: erbium-doped optical fiber amplifier, MWL: Multi-wavelength laser)

Fig. 4
Fig. 4

Spectra of the signals and the periodic BPF in the system. (a): spectrum of the 16-channel downstream signal; (b): spectrum of the downstream signal on the carrier of 1552.52 nm; (c): normalized spectrum of the periodic BPF; (d): spectrum of the filtered downstream signal on the carrier of 1552.52 nm; (e): spectrum of the 16-channel upstream signal; (f): spectrum of the upstream signal on the carrier of 1552.52 nm

Fig. 5
Fig. 5

BER corves of downstream signal and upstream signal in both back to back and 25km transmission situation

Metrics