Abstract

We have designed and simulated a dual-frequency liquid crystal (DFLC) based plasmonic signal modulator capable of achieving over 15 dB modulation depth. The voltage-controlled DFLC is combined with a groove and slit configuration and its operation is discussed. Using the finite-difference time domain (FDTD) method, simulations were conducted to discover the groove-slit separation distance that enabled a practically useful modulation depth for the two states of the DFLC. Moreover, we have shown that significant improvement in modulation depth can be achieved by addition of a second groove to the design structure. Additionally, a performance analysis indicates a switching energy on the order of femtojoules and a switching speed on the order of 100 microseconds. Results of this investigation can be useful for the future design, simulation, and fabrication of DFLC-based plasmonic signal modulating devices, which have application in electro-optical and all-optical information systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing: Singapore, 2009).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon 1(3), 484–588 (2009).
    [CrossRef]
  3. N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
  4. J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
    [CrossRef]
  5. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
    [CrossRef] [PubMed]
  6. Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
    [CrossRef]
  7. Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
    [CrossRef]
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  9. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
    [CrossRef] [PubMed]
  10. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  11. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
    [CrossRef] [PubMed]
  12. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
    [CrossRef] [PubMed]
  13. D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [CrossRef]
  14. A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
    [CrossRef]
  15. A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
    [CrossRef]
  16. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of a long-range surface plasmon-polaritons waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [CrossRef]
  17. Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
    [CrossRef] [PubMed]
  18. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
    [CrossRef] [PubMed]
  19. E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
    [CrossRef]
  20. H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [CrossRef]
  21. I. C. Khoo, “Nonlinear Optics of Liquid Crystalline Materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [CrossRef]
  22. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific: Singapore) 1997.
  23. H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009).
    [CrossRef]
  24. S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
    [CrossRef]
  25. Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
    [CrossRef]
  26. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
    [CrossRef]
  27. T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Spring-Verlag: New York, 1988)
  29. Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
    [CrossRef]
  30. C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
    [CrossRef]
  31. E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
    [CrossRef]
  32. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
    [CrossRef]
  33. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [CrossRef] [PubMed]
  34. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley: Hoboken, NJ, 2010).
  35. Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).
  36. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  37. OptiFDTD by Optiwave Corp., ver. 8.0, http://www.optiwave.com/
  38. E. Palik, Handbook of Optical Constants of Solids (Academic Press: San Diego, 1991).
  39. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]

2011 (2)

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

2010 (4)

N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

2009 (8)

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon 1(3), 484–588 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

I. C. Khoo, “Nonlinear Optics of Liquid Crystalline Materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009).
[CrossRef]

2008 (3)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

2007 (4)

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

2006 (3)

2005 (3)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[CrossRef]

2004 (3)

A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[CrossRef]

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

2000 (1)

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

1989 (1)

1986 (1)

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[CrossRef]

Alivisatos, P.

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

Amosova, L.

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

Atwater, H.

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Ayliffe, P. J.

Berini, P.

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

Bunning, T.

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Collings, N.

Crossland, W. A.

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

Desai, A. Y.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J.

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dong, X.

Du, C.

Dunham, S. N.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

Efron, U.

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[CrossRef]

Elezzabi, A. Y.

Fan, Y. H.

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

Fang, L.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Fedorov, M.

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

Flood, A. H.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Gagnon, G.

Gao, H.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Graugnard, E.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Han, Z.

Hao, Q.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Huan, A. C. H.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Huang, H.

H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Huang, T.

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Huang, T. J.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Isaev, M.

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

Jain, S.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Jensen, L.

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Juluri, B. K.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Khoo, I.

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Khoo, I. C.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

I. C. Khoo, “Nonlinear Optics of Liquid Crystalline Materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

King, J. S.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Kiraly, B.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Konshina, E.

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

Kostomarov, D.

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

Krasavin, A.

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[CrossRef]

Lahoud, N.

Lavrentovich, O. D.

Lezec, H.

D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Liang, X.

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

Lin, C.

H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009).
[CrossRef]

Lin, S. C.

Lin, Y. H.

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

Liou, J.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Liu, Y.

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Lorang, D.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

Luo, X.

MacDonald, K.

N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Mattiussi, G.

Melosh, N. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

Natarajan, L. V.

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Nawaz, A. A.

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Pala, R. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

Pishnyak, O.

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

Ren, H.

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

Sato, S.

Sederberg, S.

Sheldon, M.

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

Shi, H.

Shimizu, K. T.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

Smalley, J.

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Stoddart, J. F.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Summers, C. J.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Sutherland, R. L.

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

Tan, L. K.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Tondiglia, V. P.

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Underwood, I.

Van, V.

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

Vass, D. G.

Walker, T. R.

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Wang, C.

Wang, S. J.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Weiss, P. S.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Wen, C.

H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Wen, C. H.

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[CrossRef]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Wu, S.

H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Wu, S. T.

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[CrossRef]

Xianya, H.

H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009).
[CrossRef]

Yan, W.

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Yang, Y. W.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Zayats, A.

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Zhang-Williams, Y.

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Zhao, Y.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Zheludev, N.

N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).

A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[CrossRef]

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Zheng, Y.

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Zheng, Y. B.

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Adv. Opt. Photon (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon 1(3), 484–588 (2009).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (9)

Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).

Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004).
[CrossRef]

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005).
[CrossRef]

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[CrossRef]

A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[CrossRef]

A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986).
[CrossRef]

H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

IEEE J. Select. Top. Quantum Electron. (1)

J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010).
[CrossRef]

J. Appl. Phys. (1)

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Tech. (1)

E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008).
[CrossRef]

J. Phys. Chem. C (1)

Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009).
[CrossRef]

Laser Photon. Rev. (1)

N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).

Liquid Crystals (1)

H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009).
[CrossRef]

Nano Lett. (5)

Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[CrossRef]

D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

I. C. Khoo, “Nonlinear Optics of Liquid Crystalline Materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Phys. Rev. B (1)

E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005).
[CrossRef]

Science (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Other (6)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley: Hoboken, NJ, 2010).

OptiFDTD by Optiwave Corp., ver. 8.0, http://www.optiwave.com/

E. Palik, Handbook of Optical Constants of Solids (Academic Press: San Diego, 1991).

F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific: Singapore) 1997.

S. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing: Singapore, 2009).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Spring-Verlag: New York, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the DFLC-based nanoplasmonic modulator. An SPP is excited through diffraction-mediated transfer of momentum from the input. The SPP wave (shown here in pink) then propagates through the DFLCs, which exhibits either an ordinary or extraordinary refractive index, depending on the frequency of an applied voltage. Thus, the signal enters the interference stage at a phase that is dependent on the path length traveled and refractive index of the DFLC. Finally, a pump beam creates an interference pattern with the plasmonic signal, which is read as output information.

Fig. 2
Fig. 2

(a) Detailed geometry of the DFLC-enabled plasmonic modulator. The groove-slit separation distance is denoted as D, and is used as a parameter to find a usable modulation depth, while maintaining nanoscopic dimensions. The 200 nm gray layer represents the DFLC, whereas the tan structure is silver, modeled according to the Drude approximation. The entire structure is surrounded by air. (b) Field intensity plots for 1-groove, 1-slit device in the (b) ON state and (c) OFF state. The relative magnitude of the Poynting vector is shown against the two-dimensional geometry of the device.

Fig. 3
Fig. 3

Amplitude contrast for single-groove device. Measurements were conducted at 25 nm intervals over the given range of groove-slit separation distances. The distance at which the phase difference between the SPP waves is greatest is marked for clarity. This distance corresponds to D = 450 nm, at which a modulation depth of ~8 dB was exhibited. Notably, the magnitude of contrast at D = 325 nm and D = 600 nm is comparable to that at D = 450 nm.

Fig. 4
Fig. 4

(a) Detailed geometry of the double-groove single-slit DFLC-enabled nanoplasmonic modulator. Field intensity plots for the (b) ON state (n = no ) and (c) OFF state (n = ne ). The relative magnitude of the Poynting vector is shown against the two-dimensional geometry of the device.

Fig. 5
Fig. 5

Intensity contrast for 1-groove and 2-groove devices. The contrast of the 2-groove device is ~15 dB whereas the 1-groove device exhibits contrast of ~8.1 dB.

Fig. 6
Fig. 6

Intensity contrast for 2-groove device with three different observation planes. The contrast measured at each plane is ~15 dB, verifying that, while the power of the signal decreases with distance from the lower slit edge, the contrast between corresponding no and ne signals remains constant.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k s p p = k 0 ε m ε d ε m + ε d ,
M = 10 log 10 ( I A I B ) = 10 log 10 ( n B 2 n A 2 H y 2 p k , A H y 2 p k , B ) ,
ϕ o = 2 π ( z 1 λ 0 + z 2 n o λ 0 + D λ s p p , o ) + C 1 , o + C 2 , o ,
ϕ e = 2 π ( z 1 λ 0 + z 2 n e λ 0 + D λ s p p , e ) + C 1 , e + C 2 , e ,
ϕ p = 2 π λ 0 ( z 1 + z 2 ) .
Δ ϕ 1 = arg [ n 1 β k 0 n 1 + β k 0 ] ,
Δ ϕ 2 = arg [ β k 0 n 2 β k 0 + n 2 ] ,
| C 1 C 2 | = | Δ ϕ 1 Δ ϕ 2 | .
Δ ϕ o = | ϕ o ϕ p | ,
Δ ϕ e = | ϕ e ϕ p | .

Metrics