Abstract

We have designed and fabricated a dual-band plasmonic absorber in the near-infrared by employing a three-layer structure comprised of an elliptical nanodisk array on top of thin dielectric and metallic films. finite difference time domain (FDTD) simulations indicate that absorption efficiencies greater than 99% can be achieved for both resonance frequencies at normal incidence and the tunable range of the resonant frequency was modeled up to 700 nm by varying the dimensions of the three-layer, elliptical nanodisk array. The symmetry in our two-dimensional nanodisk array eliminates any polarization dependence within the structure, and the near-perfect absorption efficiency is only slightly affected by large incidence angles up to 50 degrees. Experimental measurements demonstrate good agreement with our simulation results.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  3. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [CrossRef] [PubMed]
  5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  6. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
    [CrossRef] [PubMed]
  7. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
    [CrossRef]
  8. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
    [CrossRef] [PubMed]
  9. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
    [CrossRef]
  10. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [CrossRef]
  11. S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
    [CrossRef]
  12. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  13. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
    [CrossRef] [PubMed]
  14. Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
    [CrossRef]
  15. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
    [CrossRef] [PubMed]
  16. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010).
    [CrossRef]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  18. B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
    [CrossRef] [PubMed]
  19. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
    [CrossRef] [PubMed]
  20. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  21. Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
    [CrossRef]
  22. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
    [CrossRef] [PubMed]
  23. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
    [CrossRef]
  24. X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
    [CrossRef] [PubMed]
  25. Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
    [CrossRef]
  26. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  27. V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [CrossRef]
  28. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
    [CrossRef]
  29. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano ASAP, (2011).
  30. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  31. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
    [CrossRef]
  32. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [CrossRef] [PubMed]
  33. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999).
    [CrossRef] [PubMed]
  34. F. D. T. D. Lumerical, http://www.lumerical.com/ , licensed to PSU BioNEMS Group.
  35. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [CrossRef] [PubMed]

2011 (1)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

2010 (8)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[CrossRef]

V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

2009 (7)

B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

2008 (7)

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (4)

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

2005 (1)

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

1999 (1)

1984 (1)

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Averitt, R. D.

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Berini, P.

Bingham, C. M.

Blair, J.

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Cai, W.

Catchpole, K. R.

Chettiar, U. K.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

Cheung, H. W.

Chiang, I.

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[CrossRef]

Crespi, V.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

de Silva, V. C.

Desai, A. Y.

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Dodge, M. J.

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Drachev, V. P.

Du, C.

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

Durant, S.

Eklund, P. C.

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Fu, Y.

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

Gao, H.

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Graugnard, E.

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Hao, Q.

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Hasan, W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Henzie, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

Hong, M. H.

Hor, T. S. A.

Hu, H.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010).
[CrossRef]

Huan, A. C. H.

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Huang, T. J.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
[CrossRef] [PubMed]

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Huang, Z. Q.

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Jensen, L.

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
[CrossRef] [PubMed]

Juluri, B. K.

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
[CrossRef] [PubMed]

Khoo, I. C.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Kildishev, A. V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Landy, N. I.

Lao, C.

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

Lee, H.

Lee, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

Lee, J. H.

Lee, M. H.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

Li, F.

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

Lin, S. C.

Liu, C. H.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Liu, Y.

Liu, Z.

Ma, C.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010).
[CrossRef]

Mayer, T. S.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Nawaz, A. A.

Neubeck, S.

V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

Odom, T. W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Park, W.

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Pikus, Y.

Polman, A.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Rhee, S. J.

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Shalaev, V. M.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[CrossRef]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Summers, C. J.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

Sun, C.

Tamma, V. A.

Tan, L. K.

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Tan, L. S.

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Tao, H.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Walker, T. R.

Wang, B.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wang, S. J.

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Wang, X.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

Wang, Z. L.

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Werner, D. H.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wu, Q.

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Xiong, Y.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Yuan, H. K.

Zeng, Y.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Zhang, F.

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Zhang, X.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zhao, Y.

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Zheng, Y. B.

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zhu, S.

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

Q. Hao, Y. Zeng, X. Wang, Y. Zhao, B. Wang, I. Chiang, D. H. Werner, V. Crespi, and T. J. Huang, “Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process,” Appl. Phys. Lett. 97(19), 193101 (2010).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Y. B. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal behavior of localized surface plasmon resonance of Au/TiO2 core/shell nanoparticle arrays,” Appl. Phys. Lett. 90(18), 183117 (2007).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96(11), 113107 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

J. Phys. Chem. C (1)

Q. Hao, B. K. Juluri, Y. B. Zheng, B. Wang, I. Chiang, L. Jensen, V. Crespi, P. C. Eklund, and T. J. Huang, “Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[CrossRef]

Laser Photonics Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[CrossRef]

Nano Lett. (3)

X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano Lett. 5(9), 1784–1788 (2005).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Opt. Express (8)

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

B. K. Juluri, S. C. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Science (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

S. Zhu, F. Li, C. Du, and Y. Fu, “A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array,” Sens. Actuators B Chem. 134(1), 193–198 (2008).
[CrossRef]

Other (2)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano ASAP, (2011).

F. D. T. D. Lumerical, http://www.lumerical.com/ , licensed to PSU BioNEMS Group.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics