Abstract

We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and characterize dispersion properties of such waveguides using leakage-radiation microscopy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  5. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  6. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  8. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31, 1307–1309 (2006).
    [CrossRef] [PubMed]
  9. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  10. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  11. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  12. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
    [CrossRef] [PubMed]
  13. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
    [CrossRef]
  14. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [CrossRef] [PubMed]
  15. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18, 5314–5319 (2010).
    [CrossRef] [PubMed]
  16. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010).
    [CrossRef] [PubMed]
  17. A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
    [CrossRef]
  18. F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
    [CrossRef]
  19. B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
    [CrossRef]
  20. F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
    [CrossRef]
  21. J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
    [CrossRef] [PubMed]
  22. K. Al-Shamery, H.-G. Rubahn, and H. Sitter, eds., Organic Nanostructures for Next-Generation Devices (Springer, 2008).
    [CrossRef]
  23. M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
    [CrossRef] [PubMed]
  24. J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
    [CrossRef] [PubMed]
  25. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small (2011), doi: .
    [CrossRef] [PubMed]
  26. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
    [CrossRef]
  27. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17, 7228–7232 (2009).
    [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
    [CrossRef]
  30. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
    [CrossRef]

2011 (1)

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small (2011), doi: .
[CrossRef] [PubMed]

2010 (4)

2009 (5)

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17, 7228–7232 (2009).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

2007 (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

2006 (5)

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31, 1307–1309 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

2004 (2)

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

2003 (1)

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

1997 (1)

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Albrektsen, O.

Al-Shamery, K.

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

Andersen, T. B.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Bagatolli, L.

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

Balzer, F.

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Berdowska, E.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Boltasseva, A.

Bordo, V. G.

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Bozhevolnyi, S. I.

I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[CrossRef] [PubMed]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18, 5314–5319 (2010).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17, 7228–7232 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31, 1307–1309 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Brandstatter, C.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Brewer, B.

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

Brewer, J.

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

Brucoli, G.

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Chen, Z.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

Chichkov, B. N.

Colas des Francs, G.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

D’Amore, F.

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Dereux, A.

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18, 5314–5319 (2010).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Elim, H. I.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Gallazzi, M. C.

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

García-Vidal, F. J.

González, M. U.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Hohenau, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Holmgaard, T.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Ji, W.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Jozefowski, L.

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

Kapustianyk, V.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Kityk, I.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Kjelstrup-Hansen, J.

Krasavin, A. V.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Krupka, O.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Kuipers, L. K.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Kulyk, B.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lanata, M.

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Leising, G.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Li, Y.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Liu, B.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Lutzen, A.

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Maibohm, C.

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Markey, L.

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18, 5314–5319 (2010).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Marquart, C.

Martín-Moreno, L.

Massenot, S.

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18, 5314–5319 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Meghdadi, F.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Nielsen, M. G.

Niko, A.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Passinger, S.

Pietralunga, S. M.

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Quidant, R.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Radko, I. P.

Reinhardt, C.

Renger, J.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Rubahn, H.-G.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small (2011), doi: .
[CrossRef] [PubMed]

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Rudyk, V.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Sahraoui, B.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Schiek, M.

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Simonsen, A. C.

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Tasch, S.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Tavares, L.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small (2011), doi: .
[CrossRef] [PubMed]

Tkaczyk, S.

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Volkov, V. S.

Wang, J.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

White, T. J.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Xue, J.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Yuwono, A. H.

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Zayats, A. V.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zerbi, G.

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
[CrossRef]

J. Appl. Phys. (2)

A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, “Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films,” J. Appl. Phys. 106, 093102 (2009).
[CrossRef]

J. Mater. Chem. (1)

A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2PMMA nanohybrids,” J. Mater. Chem. 14, 2978–2987 (2004).
[CrossRef]

Nano Lett. (2)

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

J. Brewer, M. Schiek, A. Lutzen, K. Al-Shamery, and H.-G. Rubahn, “Nanofiber frequency doublers,” Nano Lett. 6, 2656–2659 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, and H.-G. Rubahn, “A 3D view on free-floating, space-fixed and surface-bound para-phenylene nanofibres,” Nanotechnology 16, 2396–2401 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

F. D’Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24, 661–665 (2004).
[CrossRef]

Phys. Rev. B (3)

F. Balzer, V. G. Bordo, A. C. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

SMALL (1)

M. Schiek, F. Balzer, B. Brewer, K. Al-Shamery, and H.-G. Rubahn, “Organic molecular nanotechnology,” SMALL 4, 176–181 (2008).
[CrossRef] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small (2011), doi: .
[CrossRef] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

K. Al-Shamery, H.-G. Rubahn, and H. Sitter, eds., Organic Nanostructures for Next-Generation Devices (Springer, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Epifluorescence microscopy image obtained by illuminating the sample normally with a Hg lamp at a wavelength of 360 nm. (b) Microscope image of organic nanofibers (ONFs) transferred onto a gold surface with ridge couplers (see details in text), which facilitate excitation of a DLSPPW mode. (c) Leakage-radiation microscopy (LRM) image of a DLSPPW mode propagating along an ONF marked with a blue arrow in the panel (b). The image is filtered in the Fourier plane [26] to remove most of the substantially brighter background, produced by SPPs, keeping the image of the DLSPPW mode untouched. A more divergent beam above the DLSPPW mode is a SPP excited on the grating and reflected thereafter upwards by the nanofiber. This beam has not been filtered out, because it lies very close to the DLSPPW mode in the Fourier plane.

Fig. 2
Fig. 2

(a) Geometry used in numerical evaluations of DLSPPW effective index and of electric-field distribution. (b) Atomic-force microscopy (AFM) image of the ONF shown in Fig. 1b. The last ridge of the grating coupler is also visible. (c) Profile taken across the nanofiber as indicated with a blue line in the panel (b). The corresponding extracted dimensions are: w = 180 nm, h = 60 nm. The profile has a shape reminding a Gaussian due to the convolution with the shape of the AFM probe. (d) Calculated electric-field distribution of the fundamental TM00 mode of the DLSPPW formed by the given ONF.

Fig. 3
Fig. 3

(a) AFM image of an ONF whose dispersion properties have been investigated. The last ridge of the grating coupler is also visible. (b), (c) LRM images of the DLSPPW mode propagating along the ONF shown in panel (a) taken in the Fourier plane. The excitation wavelength is (b) 720 nm and (c) 800 nm. The guided mode is represented with a straight line. The circle touching the line corresponds to a SPP at the gold-air interface. (d) Profiles taken across the Fourier images along the dashed lines in panels (b) and (c). A tiny displacement of the maximum corresponding to the DLSPPW mode indicates a change of the mode effective index.

Fig. 4
Fig. 4

(a) AFM image of three ONFs in close proximity to each other and (b) the corresponding LRM image taken in the Fourier plane. The excitation wavelength is 800 nm. The two DLSPPW modes of ONFs 1 and 2 are visible from the right side of the circle. The mode on the left side of the circle is the counter-propagating DLSPPW mode of the ONF 1 from the other side of the grating [not visible in panel (a)].

Fig. 5
Fig. 5

(a) AFM image of a separated ONF marked with a red arrow in Fig. 1b and (b) the corresponding LRM image taken in the Fourier plane. The excitation wavelength is 760 nm.

Tables (1)

Tables Icon

Table 1 Evaluated DLSPPW Mode EI for the ONF Shown in Fig. 3a *

Metrics