Abstract

We demonstrate ultra-low timing jitter optical pulse trains from free-running, 80 MHz repetition rate, mode-locked Yb-fiber lasers. Timing jitter of various mode-locking conditions at close-to-zero intracavity dispersion (–0.004 to +0.002 ps2 range at 1040 nm center wavelength) is characterized using a sub-20-attosecond-resolution balanced optical cross-correlation method. The measured lowest rms timing jitter is 175 attoseconds when integrated from 10 kHz to 40 MHz (Nyquist frequency) offset frequency range, which corresponds to the record-low timing jitter from free-running mode-locked fiber lasers so far. We also experimentally found the mode-locking conditions of fiber lasers where both ultra-low timing jitter and relative intensity noise can be achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [CrossRef]
  2. J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006).
    [CrossRef]
  3. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [CrossRef]
  4. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  5. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009).
    [CrossRef] [PubMed]
  6. J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010).
    [CrossRef] [PubMed]
  7. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” arXiv:1101.3613v3 (2011).
  8. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
    [CrossRef] [PubMed]
  9. T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
    [CrossRef]
  10. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [CrossRef]
  11. R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [CrossRef]
  12. J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photonics Rev. 4(3), 432–456 (2010).
    [CrossRef]
  13. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
    [CrossRef]
  14. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
    [CrossRef] [PubMed]
  15. U. Demirbas, A. Benedick, A. Sennaroglu, D. Li, J. Kim, J. G. Fujimoto, and F. X. Kärtner, “Attosecond resolution timing jitter characterization of diode pumped femtosecond Cr:LiSAF lasers,” in Conference on Lasers and Electro-Optics 2010 (Optical Society of America, 2010), Paper CTuDD6.
  16. A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kaertner, “Attosecond Ti:sapphire pulse train phase noise,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.
    [PubMed]
  17. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [CrossRef]
  18. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
    [CrossRef] [PubMed]
  19. T. K. Kim, Y. Song, K. Jung, C. H. Nam, and J. Kim, “Sub-femtosecond timing jitter optical pulse trains from mode-locked Er-fiber lasers,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuA5.
    [PubMed]
  20. Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
    [CrossRef] [PubMed]
  21. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
    [CrossRef]
  22. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
    [CrossRef] [PubMed]
  23. W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17(7), 514–516 (1992).
    [CrossRef] [PubMed]
  24. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [CrossRef] [PubMed]
  25. I. L. Budunoğlu, C. Ulgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34(16), 2516–2518 (2009).
    [CrossRef] [PubMed]
  26. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
    [CrossRef] [PubMed]
  27. K. Wu, J. H. Wong, P. Shum, S. Fu, C. Ouyang, H. Wang, E. J. R. Kelleher, A. I. Chernov, E. D. Obraztsova, and J. Chen, “Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes,” Opt. Express 18(16), 16663–16670 (2010).
    [CrossRef] [PubMed]
  28. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
    [CrossRef] [PubMed]

2011 (3)

2010 (5)

2009 (3)

2008 (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

2007 (4)

2006 (1)

J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006).
[CrossRef]

2004 (1)

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

2003 (1)

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

2001 (2)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[CrossRef]

1997 (1)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

1992 (1)

Allison, T. K.

Angelow, G.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Boudot, R.

Bourgeois, P. Y.

Budunoglu, I. L.

Chen, J.

Chernov, A. I.

Cingöz, A.

Cliché, J.-F.

J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006).
[CrossRef]

Cox, J.

Cox, J. A.

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[CrossRef] [PubMed]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Diddams, S. A.

Fermann, M. E.

Fu, S.

Fujimoto, J. G.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Hall, J. L.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Hartl, I.

Haus, H. A.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Ilday, F. Ö.

Ippen, E. P.

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[CrossRef] [PubMed]

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Johnson, T. A.

Jung, K.

Kaertner, F. X.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Kärtner, F. X.

Kelleher, E. J. R.

Kersalé, Y.

Kim, J.

Kim, J.-W.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Knox, W. H.

Kobayashi, Y.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[CrossRef]

Kuzucu, O.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[CrossRef]

Le Coq, Y.

Lours, M.

Luiten, A. N.

Ma, L. S.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Millo, J.

Murnane, M. M.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Namiki, S.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

Nejadmalayeri, A. H.

Newbury, N. R.

Nugent-Glandorf, L.

Obraztsova, E. D.

Oktem, B.

Ouyang, C.

Paschotta, R.

R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express 18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

Ruehl, A.

Santarelli, G.

Scheuer, V.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Schibli, T. R.

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[CrossRef]

Shelton, R. K.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Shillue, B.

J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006).
[CrossRef]

Shum, P.

Sickler, J. W.

Song, Y.

Swann, W. C.

Ulgüdür, C.

Valley, G. C.

Wang, H.

Wong, J. H.

Wu, K.

Ye, J.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[CrossRef] [PubMed]

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Yost, D. C.

Appl. Phys. B (1)

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

IEEE Contr. Syst. Mag. (1)

J.-F. Cliché and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag. 26(1), 19–26 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: part I—theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

T. R. Schibli, O. Kuzucu, J.-W. Kim, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Toward single-cycle laser systems,” IEEE J. Sel. Top. Quantum Electron. 9(4), 990–1001 (2003).
[CrossRef]

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[CrossRef]

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photonics Rev. 4(3), 432–456 (2010).
[CrossRef]

Nat. Photonics (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (10)

J. Kim and F. X. Kärtner, “Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift,” Opt. Lett. 35(12), 2022–2024 (2010).
[CrossRef] [PubMed]

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[CrossRef] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[CrossRef] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[CrossRef] [PubMed]

Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
[CrossRef] [PubMed]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[CrossRef] [PubMed]

I. L. Budunoğlu, C. Ulgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34(16), 2516–2518 (2009).
[CrossRef] [PubMed]

J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009).
[CrossRef] [PubMed]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[CrossRef] [PubMed]

W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17(7), 514–516 (1992).
[CrossRef] [PubMed]

Science (1)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Other (4)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” arXiv:1101.3613v3 (2011).

T. K. Kim, Y. Song, K. Jung, C. H. Nam, and J. Kim, “Sub-femtosecond timing jitter optical pulse trains from mode-locked Er-fiber lasers,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuA5.
[PubMed]

U. Demirbas, A. Benedick, A. Sennaroglu, D. Li, J. Kim, J. G. Fujimoto, and F. X. Kärtner, “Attosecond resolution timing jitter characterization of diode pumped femtosecond Cr:LiSAF lasers,” in Conference on Lasers and Electro-Optics 2010 (Optical Society of America, 2010), Paper CTuDD6.

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kaertner, “Attosecond Ti:sapphire pulse train phase noise,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the BOC-based timing jitter characterization of Yb-fiber lasers. DM: dichroic mirror; LD: 976nm laser diode; PZT: piezoelectric transducer.

Fig. 2
Fig. 2

(a) Typical timing jitter spectra and (b) the corresponding optical spectra measured at different mode-locking conditions from a stretched-pulse Yb-fiber laser.

Fig. 3
Fig. 3

The rms timing jitter (integrated from 10 kHz to 10 MHz offset frequency) versus intracavity dispersion of different mode-locking conditions. Bottom is the calculated chirp parameter versus intracavity dispersion.

Fig. 4
Fig. 4

Top: The best timing jitter spectral density measurement result and the equivalent single-sideband (SSB) phase noise at 10-GHz carrier frequency of the Yb-fiber laser operating at zero intracavity dispersion. The RIN-induced timing jitter projected from the measured RIN is also plotted. Bottom: The integrated timing jitter is 175 as [10 kHz – 40 MHz]. Inset: optical spectra of the two Yb-fiber lasers used.

Fig. 5
Fig. 5

The comparison of best achievable timing jitter at 0 ps2 (blue down-triangle and blue curves) and −0.004 ps2 (red up-triangle and red curves) intracavity dispersion. Even the dispersion and optical spectra are different, the jitter spectra and integrated jitter are similar.

Fig. 6
Fig. 6

The comparison of timing jitter with different mode-locking conditions. Even the dispersion and optical spectra are similar, the jitter spectra and integrated jitter can be significantly different.

Fig. 7
Fig. 7

RIN of the mode-locked Yb-fiber laser with different intracavity dispersion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β = tan { 1 2 [ arg ( α j ) arg ( g Ω g 2 + j D ) ] }

Metrics