Abstract

We describe a tunable two-color CW light source sufficient for realizing a coherent Raman transfer between two molecular states that are more than 0.5 eV (120 THz) apart. The simultaneous frequency stabilization of 901 nm and 655 nm light was achieved by locking diode lasers to a single ultralow expansion cavity with dual wavelengths coating. By utilizing offset-locking and optical phase-locked loop (OPLL), we ensured a large mode-hop free tuning range (> 2 GHz). The obtained short term linewidth (<10 Hz) and the linear drift of frequency (65 mHz/s) were both sufficient to eliminate the influence of laser linewidths on the efficiency of coherent Raman transition.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31(6), 736–738 (2006).
    [CrossRef] [PubMed]
  2. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15),” Opt. Lett. 32(6), 641–643 (2007).
    [CrossRef] [PubMed]
  3. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
    [CrossRef]
  4. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
    [CrossRef] [PubMed]
  5. J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
    [CrossRef]
  6. K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
    [CrossRef] [PubMed]
  7. S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
    [CrossRef]
  8. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
    [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  10. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16(4), 523–532 (1999).
    [CrossRef]
  11. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2(8), 1320–1326 (1985).
    [CrossRef]
  12. K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
    [CrossRef] [PubMed]
  13. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
    [CrossRef]

2010 (2)

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

2009 (1)

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

1999 (1)

1998 (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[CrossRef]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

1985 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Aikawa, K.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Akamatsu, D.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Aldegunde, J.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[CrossRef]

Bjorklund, G. C.

Blatt, S.

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[CrossRef]

Boyd, M. M.

Byer, R. L.

Danzl, J. G.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

de Miranda, M. H. G.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Foreman, S. M.

Gehrtz, M.

Gill, P.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Gustafson, E. K.

Gustavsson, M.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Haller, E.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Hänsch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Hart, R.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Hayashi, M.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Helmcke, J.

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Huang, X.

Husman, M. E.

Hutson, J. M.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Inouye, S.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Jin, D. S.

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Julienne, P. S.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Kishimoto, T.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Kobayashi, J.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Kotochigova, S.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Lawrence, M. J.

Ludlow, A. D.

Mark, M. J.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Mensing, F.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Nägerl, H.-C.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Naidon, P.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Nesbitt, D. J.

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

Neyenhuis, B.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Ni, K.-K.

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Notcutt, M.

Oasa, K.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Ospelkaus, S.

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Oxborrow, M.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Pe’er, A.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Sterr, U.

Stoehr, H.

Udem, Th.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Ueda, M.

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Webster, S. A.

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Whittaker, E. A.

Willke, B.

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[CrossRef]

Ye, J.

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15),” Opt. Lett. 32(6), 641–643 (2007).
[CrossRef] [PubMed]

Zanon-Willette, T.

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Zirbel, J. J.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6(4), 265–270 (2010).
[CrossRef]

Opt. Commun. (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, “A dipolar gas of ultracold molecules,” Phys. Chem. Chem. Phys. 11(42), 9626–9639 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (2)

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007).
[CrossRef]

Phys. Rev. Lett. (1)

K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105(20), 203001 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998).
[CrossRef]

Science (1)

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322(5899), 231–235 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup of the two-color light source. Two external cavity diode lasers (ECDL) work as master lasers which are directly locked to the ULE cavity with dual-wavelength coating. The light of the master lasers is carried through polarization maintaining fibers (10 m). The linewidth of the master lasers is narrower than 10 Hz and its long-term stability is better than 100 kHz for a few days. STIRAP experiments are carried out with two slave lasers which are offset-locked to the master lasers via OPLL. The slave lasers are also used for the beat note measurement for measuring the linewidth of the master lasers, when the slave lasers are locked to the ULE cavity.

Fig. 2
Fig. 2

Actual optical setup around the ULE cavity. The light from a master laser is carried by an optical fiber to the table. A part of the light is back-reflected to the fibers in order to cancel the phase noise in the fibers. The Glan-Thomson polarizer is used to purify the polarization for minimizing the variation in the offset of the error signal. The half waveplates before and after the EOM are used to cancel the offset of the error signal. The isolator has two roles. One is to extract the reflected light from the cavity for obtaining the error signal. The other is to prevent the reflected light from going back to the fiber. The two light is finally overlapped with a Glan-Taylor polarizer and is incident on the cavity. The typical power incident on the cavity is 200 μW for both lights. In order to avoid interferences between the cavity and any other optics, all the optics including isolators are tilted against the optical axis. The PD1 and PD2 are used for the PDH locking, whereas the PD3 and PD4 are used for stabilizing the laser power to within 0.2%.

Fig. 3
Fig. 3

Long-term stability of the ULE cavity measured with a molecular transition. The offset frequency between a laser locked to the ULE cavity and a laser monitoring molecules is plotted with respect to date. The slope of 65 mHz/s is comparable to the previous study [3] and is understood as the aging of the ULE glass. The observed linear drift indicates that the fluctuation due to the variation in room temperature is well below 100 kHz.

Fig. 4
Fig. 4

Acceleration of the Minus-K optical table used for mounting the ULE cavity. The acceleration at 1 Hz is well below 10 μg. Since a notched cavity suspended at Airy points has a typical sensitivity lower than 100 kHz/g in a horizontal direction and 10 kHz/g in a vertical direction, our cavity is expected to provide a frequency stability better than 10 Hz for a few seconds.

Fig. 5
Fig. 5

(a) Circuit diagram of the photo-detector for PDH locking. (b) Noise spectrum of the AC output of the photo-detector. The feedback capacitance required for a proper operation as a transimpedance amplifier is supplied from a parasitic capacitance of the feedback resistance. Instead of adding a feedback capacitance, we added a capacitor and a resistance (2 pF and 51 Ω in series) to the external compensation pin of AD8099 for reducing high frequency noise. By adjusting the compensation capacitance, we could obtain a bandwidth of up to 70 MHz with the same circuit.

Fig. 6
Fig. 6

Beat note spectra between two master lasers locked to a ULE cavity. (a) Two diode lasers at 901nm. (b) A dye and a diode laser at 655 nm. For both wavelengths, spectra in a wide range (6 MHz) are shown in insets.

Metrics