Abstract

Highly stable electro-optic field probe with wide dynamic range is presented. The highly efficient electro-optic modulation mechanism – based on interference and field-induced phase retardations using a new embodiment with a relatively thick sensor crystal mounted on a fiber – is explained. The probe is calibrated up to 3.5 GHz through the use of a micro-TEM cell and a standard gain horn antenna, both devices in which the electric field may be calculated at the specific sensing location of an electro-optic probe. The field-calibrated sensor shows over 100 dB (≤ 1 V/m to > 100 kV/m) of linear dynamic range. Also, an issue with the instability of the sensors that often occurs in intense electric-field measurements associated with electro-optic crystals is overcome by a real-time, bias-control loop. The stabilized sensor performance and its potential use for (pulsed) high-power-microwave applications are discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983).
    [CrossRef]
  2. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
    [CrossRef]
  3. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
    [CrossRef]
  4. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
    [CrossRef]
  5. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
    [CrossRef]
  6. A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
    [CrossRef]
  7. M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).
  8. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
    [CrossRef]
  9. D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
    [CrossRef]
  10. D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003),Ch. 8.
  12. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21(11), 1948–1952 (2004).
    [CrossRef]
  13. D. J. Lee and J. F. Whitaker, “Optimization of sideband modulation in optical-heterodyne-downmixed electro-optic sensing,” Appl. Opt. 48(8), 1583–1590 (2009).
    [CrossRef] [PubMed]
  14. D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008).
    [CrossRef]
  15. M. Bäckström, “HPM testing of a car: a representative example of the susceptibility of civil systems,” W4, In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 189–190.
  16. N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
    [CrossRef]
  17. J. LoVetri, A. Wilbers, and A. Zwamborn, “Microwave interaction with a personal computer: experiment and modeling,” In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 203–206.
  18. A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
    [CrossRef]
  19. A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
    [CrossRef] [PubMed]
  20. M. W. Wik and W. A. Radasky, “Intentional electromagnetic interference (IEMI)—Background and status of the standardization work in the International Electrotechnical Commission,” In Proceedings of URSI General Assembly, (Maastricht, The Netherlands, 2002).

2011 (1)

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

2010 (1)

2009 (3)

D. J. Lee and J. F. Whitaker, “Optimization of sideband modulation in optical-heterodyne-downmixed electro-optic sensing,” Appl. Opt. 48(8), 1583–1590 (2009).
[CrossRef] [PubMed]

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
[CrossRef]

2008 (2)

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008).
[CrossRef]

2007 (1)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
[CrossRef]

2004 (2)

M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).

J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21(11), 1948–1952 (2004).
[CrossRef]

2001 (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
[CrossRef]

2000 (2)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
[CrossRef]

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

1986 (1)

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
[CrossRef]

1983 (1)

H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983).
[CrossRef]

1982 (1)

Abe, M.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Arai, K. I.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Arakawa, S.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Bassen, H. I.

H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983).
[CrossRef]

Casson, J. L.

Choi, J. H.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

Dandridge, A.

Gahagan, K. T.

Garzarella, A.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
[CrossRef]

Gopalan, V.

Hirose, M.

M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).

Ishizone, T.

M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).

Jain, R. K.

Kang, J. S.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kang, N. W.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
[CrossRef]

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kang, T. W.

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
[CrossRef]

Kim, D. C.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kim, J. H.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kim, J. Y.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

Kishi, M.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Komiyama, K.

M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).

Kwon, J. Y.

Lee, D. J.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Optimization of sideband modulation in optical-heterodyne-downmixed electro-optic sensing,” Appl. Opt. 48(8), 1583–1590 (2009).
[CrossRef] [PubMed]

D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008).
[CrossRef]

Lee, J. G.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
[CrossRef]

Ohara, T.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Ota, H.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Qadri, S. B.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
[CrossRef]

Robinson, J. M.

Sander, R. K.

Sato, R.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Scrymgeour, D. A.

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
[CrossRef]

Smith, G. S.

H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983).
[CrossRef]

Suzuki, E.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Takahashi, M.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
[CrossRef]

Tsuchiya, M.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Tveten, A. B.

Wakana, S.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Whitaker, J. F.

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Optimization of sideband modulation in optical-heterodyne-downmixed electro-optic sensing,” Appl. Opt. 48(8), 1583–1590 (2009).
[CrossRef] [PubMed]

D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
[CrossRef]

Yaghjian, A. G.

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
[CrossRef]

Yamazaki, E.

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Yang, K.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77(4), 486–488 (2000).
[CrossRef]

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(221113), 1–3 (2009).
[CrossRef]

IEEE Microwave Wireless Comp. Lett. (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electric-field mapping system using an optical-fiber-based electro-optic probe,” IEEE Microwave Wireless Comp. Lett. 11(4), 164–166 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. J. Lee and J. F. Whitaker, “A simplified fabry–pérot electrooptic-modulation sensor,” IEEE Photon. Technol. Lett. 20(10), 866–868 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

H. I. Bassen and G. S. Smith, “Electric field probes,” IEEE Trans. Antenn. Propag. 31(5), 710–718 (1983).
[CrossRef]

A. G. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting vectors by using electro-optic probes for electromagnetic fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Characterization method of electric field probe by using transfer standard in GTEM cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

IEICE Trans. Comm, (1)

M. Hirose, T. Ishizone, and K. Komiyama, “Antenna pattern measurements using photonic sensor for planar near-field measurement at X band,” IEICE Trans. Comm, E87-B, 727–734 (2004).

IEICE Trans. Electron (1)

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron E90-C, 436–442 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Sensors (Basel Switzerland) (1)

D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel Switzerland) 11(1), 806–824 (2011).
[CrossRef]

Other (4)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003),Ch. 8.

M. W. Wik and W. A. Radasky, “Intentional electromagnetic interference (IEMI)—Background and status of the standardization work in the International Electrotechnical Commission,” In Proceedings of URSI General Assembly, (Maastricht, The Netherlands, 2002).

J. LoVetri, A. Wilbers, and A. Zwamborn, “Microwave interaction with a personal computer: experiment and modeling,” In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 203–206.

M. Bäckström, “HPM testing of a car: a representative example of the susceptibility of civil systems,” W4, In Proceedings of 13th International Zurich Symposium and Technical Exhibition on EMC, (Zurich, Switzerland, 1999), pp. 189–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Fiber-coupled EO field probe: (a) structure of an interferometric probe; (b) structure of a thick, balanced-interferometric probe; (c) detailed interference components within the fiber core of a thick, balanced-interferometric probe.

Fig. 2
Fig. 2

Experimental interference fringes for a thick, balanced-interferometric probe. (Each fringe spectra arises from a 0.5-mm-thick LiTaO3 etalon with refractive index ne (solid line) or no (dashed line)). (Points a - d are efficient biases for EO amplitude modulation).

Fig. 3
Fig. 3

Experimental schematic of the all-fiber-based EO-probe calibration system. (The gray and black lines are optical fibers and electrical connections, respectively).

Fig. 4
Fig. 4

Measured EO-signal strength (left axis) and actual electric-field strength (right axis) versus the net power in the μ-TEM cell at 1 GHz. (This calibrates the measured signals into field with units of V/m).

Fig. 5
Fig. 5

Experimental block diagram of EO-probe calibration system with a standard-gain horn antenna. (The E-field line in the chamber is vertically and linearly polarized).

Fig. 6
Fig. 6

Calibration factors for the EO probe over a 3.5-GHz bandwidth.

Fig. 7
Fig. 7

Vector-field distributions over a coplanar waveguide transmission line at 1 MHz (solid lines: amplitude, dotted lines: phase).

Fig. 8
Fig. 8

Measured EO-signal strength (left axis) and actual electric-field strength (right axis) over the gap of a coplanar waveguide line at 1 GHz.

Fig. 9
Fig. 9

Stability of 30-V/m and 1-V/m electric-field measurement over a one-hour period.

Fig. 10
Fig. 10

Comparison of stabilized probe reflectance at 1 mW optical power when using TEC loop with DFB laser (black: sensing 30 V/m electric field ; gray: sensing 124 kV/m).

Fig. 11
Fig. 11

Comparison of temperature (and wavelength) bias drifts at the 1 mW “locked” probe reflectance shown in Fig. 10 (black: sensing 30 V/m electric field ; gray: sensing 124 kV/m).

Fig. 12
Fig. 12

Spectrum of EO signal for square-pulses with 10% duty cycle at 1 GHz (average RF power of + 37 dBm).

Fig. 13
Fig. 13

Spectrum of EO signal for square-pulses with 1% duty cycle at 1 GHz (average RF power of + 27 dBm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s t d = 30 m a i n G o ( R ) ( 1 | Γ A N T | ) 2 R
P m a i n = P s i d e R 21 R 31

Metrics