Abstract

The emission properties of a single quantum dot in a microcavity are studied on the basis of a semiconductor model. As a function of the pump rate of the system we investigate the onset of stimulated emission, the possibility to realize stimulated emission in the strong-coupling regime, as well as the excitation-dependent changes of the photon statistics and the emission spectrum. The role of possible excited charged and multi-exciton states, the different sources of dephasing for various quantum-dot transitions, and the influence of background emission into the cavity mode are analyzed in detail. In the strong coupling regime, the emission spectrum can contain a line at the cavity resonance in addition to the vacuum doublet caused by off-resonant transitions of the same quantum dot. If strong coupling persists in the regime of stimulated emission, the emission spectrum near the cavity resonance additionally grows due to broadened contributions from higher rungs of the Jaynes-Cummings ladder.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef] [PubMed]
  2. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  3. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
    [CrossRef]
  4. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
    [CrossRef]
  5. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
    [CrossRef] [PubMed]
  6. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
  7. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
    [CrossRef]
  8. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  9. S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
    [CrossRef] [PubMed]
  10. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
    [CrossRef] [PubMed]
  11. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
    [CrossRef] [PubMed]
  12. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
    [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
    [CrossRef] [PubMed]
  14. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
    [CrossRef]
  15. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [CrossRef] [PubMed]
  16. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef] [PubMed]
  17. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
    [CrossRef]
  18. J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
    [CrossRef] [PubMed]
  19. E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
    [CrossRef]
  20. J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
    [CrossRef] [PubMed]
  21. Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
    [CrossRef] [PubMed]
  22. A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
    [CrossRef]
  23. S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
    [CrossRef] [PubMed]
  24. T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
    [CrossRef]
  25. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
    [CrossRef]
  26. U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992).
    [CrossRef]
  27. T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
    [CrossRef]
  28. J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
    [CrossRef]
  29. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 1998).
  30. K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
    [CrossRef]
  31. C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
    [CrossRef]
  32. A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
    [CrossRef]
  33. M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
    [CrossRef] [PubMed]
  34. F. Jahnke, ed., Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing, to be published).
  35. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011).
    [CrossRef]
  36. P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004).
    [PubMed]
  37. S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322–3330 (2009).
    [CrossRef] [PubMed]
  38. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
    [CrossRef]
  39. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
    [CrossRef] [PubMed]
  40. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
    [CrossRef]
  41. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
    [CrossRef] [PubMed]
  42. M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967).
    [CrossRef]
  43. S. Stenholm, “Quantum theory of electromagnetic fields interacting with atoms and molecules,” Phys. Rep. 6, 1–121 (1973).
    [CrossRef]
  44. D. Walls and G. Milburn, Quantum Optics (Springer, 1994).
  45. N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
    [CrossRef]
  46. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
    [CrossRef]
  47. P. Hawrylak, “Excitonic artificial atoms: Engineering optical properties of quantum dots,” Phys. Rev. B 60, 5597 (1999).
    [CrossRef]

2011 (2)

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011).
[CrossRef]

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

2010 (8)

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef] [PubMed]

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

2009 (8)

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
[CrossRef]

S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17, 3322–3330 (2009).
[CrossRef] [PubMed]

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

2008 (3)

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

2007 (2)

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

2004 (5)

P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004).
[PubMed]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
[CrossRef]

2003 (1)

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

2002 (2)

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

1999 (2)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

P. Hawrylak, “Excitonic artificial atoms: Engineering optical properties of quantum dots,” Phys. Rev. B 60, 5597 (1999).
[CrossRef]

1998 (2)

H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 1998).

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

1994 (1)

D. Walls and G. Milburn, Quantum Optics (Springer, 1994).

1992 (2)

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[CrossRef] [PubMed]

U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992).
[CrossRef]

1991 (1)

J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
[CrossRef] [PubMed]

1973 (1)

S. Stenholm, “Quantum theory of electromagnetic fields interacting with atoms and molecules,” Phys. Rep. 6, 1–121 (1973).
[CrossRef]

1967 (1)

M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967).
[CrossRef]

1933 (1)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Amann, M.-C.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Andreani, L. C.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

Asano, T.

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

Aßmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Auffèves, A.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

Badolato, A.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Baer, N.

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
[CrossRef]

Bayer, M.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Bazhenov, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Bestermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Bhattacharya, P.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Bichler, M.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

Bockelmann, U.

U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992).
[CrossRef]

Böckler, C.

Böhm, G.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Brouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Cao, H.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Carmichael, H. J.

H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 1998).

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Cirac, J. I.

J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
[CrossRef] [PubMed]

del Valle, E.

E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Dwir, B.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Egeler, T.

U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Faist, J.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Farrer, I.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Felici, M.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Finley, J. J.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Florian, M.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

Forchel, A.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Gallo, P.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Gardiner, C.

P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004).
[PubMed]

Gartner, P.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef] [PubMed]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
[CrossRef]

Gerace, D.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

Gérard, J.-M.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Gies, C.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Gorbunov, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Götzinger, S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Hauke, N.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Hawrylak, P.

P. Hawrylak, “Excitonic artificial atoms: Engineering optical properties of quantum dots,” Phys. Rev. B 60, 5597 (1999).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Höfling, S.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Hofmann, C.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Hu, E. L.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hughes, S.

Ikeda, K.

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Imamodlu, A.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

Jahnke, F.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011).
[CrossRef]

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statisticsof a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef] [PubMed]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
[CrossRef]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

Jiang, H.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kamath, K.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Kamp, M.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Kaniber, M.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Kapon, E.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Kasprzak, J.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Kira, M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Kistner, C.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

Kojima, K.

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

Kurtze, H.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Lamb, W.

M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967).
[CrossRef]

Langbein, W.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

Laucht, A.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Laussy, F. P.

E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Lodahl, P.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Matsuda, K.

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Michler, P.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Milburn, G.

D. Walls and G. Milburn, Quantum Optics (Springer, 1994).

Mohan, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Mohtashami, A.

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Mu, Y.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[CrossRef] [PubMed]

Muljarov, E. A.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Münch, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Nielsen, T. R.

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Nishi, K.

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Noda, S.

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

Norris, T. B.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Poizat, J.-P.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reuter, D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Ritchi, D. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Ritsch, H.

J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
[CrossRef] [PubMed]

Ritter, S.

Rudra, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Saiki, T.

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Saito, H.

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Salter, C. L.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

Santos, M. F.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

Savage, C. M.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Schneider, C.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Scully, M.

M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967).
[CrossRef]

Seebeck, J.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Shields, A. J.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Singh, J.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

Sosnowski, T. S.

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

Stenholm, S.

S. Stenholm, “Quantum theory of electromagnetic fields interacting with atoms and molecules,” Phys. Rep. 6, 1–121 (1973).
[CrossRef]

Stevenson, R. M.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

Stobbe, S.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Strauf, S.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Strauss, M.

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Tejedor, C.

E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

Ulrich, S. M.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Villas-Bôas, J. M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Walls, D.

D. Walls and G. Milburn, Quantum Optics (Springer, 1994).

Wieck, A. D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Winger, M.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

Xie, Z. G.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Yakovlev, D. R.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

Yamamoto, Y.

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Yao, P.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Zoller, P.

P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004).
[PubMed]

J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

K. Matsuda, K. Ikeda, T. Saiki, H. Saito, and K. Nishi, “Carrier-carrier interaction in single In0.5Ga0.5As quantum dots at room temperature investigated by near-field scanning optical microscope,” Appl. Phys. Lett. 83, 2250–2252 (2003).
[CrossRef]

Eur. Phys. J. B (1)

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B 42, 231–237 (2004).
[CrossRef]

Laser Photonics Rev. (1)

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev. 5, n/a. doi: (2011).
[CrossRef]

Nat. Mater. (1)

J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[CrossRef]

Nature (4)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchi, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef] [PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Bestermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rep. (1)

S. Stenholm, “Quantum theory of electromagnetic fields interacting with atoms and molecules,” Phys. Rep. 6, 1–121 (1973).
[CrossRef]

Phys. Rev. (1)

M. Scully and W. Lamb, “Quantum theory of an optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967).
[CrossRef]

Phys. Rev. A (2)

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[CrossRef] [PubMed]

J. I. Cirac, H. Ritsch, and P. Zoller, “Two-level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 4541–4551 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (13)

E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. ii.) Fermions,” Phys. Rev. B 79, 235326 (2009).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81, 245419 (2010).
[CrossRef]

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326 (2009).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

T. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in InGaAs/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998).
[CrossRef]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80, 235319 (2009).
[CrossRef]

U. Bockelmann and T. Egeler, “Electron relaxation in quantum dots by means of Auger processes,” Phys. Rev. B 46, 15574 (1992).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
[CrossRef]

C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 073310 (2002).
[CrossRef]

A. Laucht, M. Kaniber, A. Mohtashami, N. Hauke, M. Bichler, and J. J. Finley, “Temporal monitoring of non-resonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions,” Phys. Rev. B 81, 241302 (2010).
[CrossRef]

P. Hawrylak, “Excitonic artificial atoms: Engineering optical properties of quantum dots,” Phys. Rev. B 60, 5597 (1999).
[CrossRef]

Phys. Rev. Lett. (8)

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamođlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 226808 (2008).
[CrossRef] [PubMed]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited ingaas quantum dots in gaas nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “A semiconductor model for the single quantum dot laser,” Phys. Status Solidi B 248, 879–882 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef] [PubMed]

Other (4)

D. Walls and G. Milburn, Quantum Optics (Springer, 1994).

P. Zoller and C. Gardiner, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 3rd ed. (Springer-Verlag, 2004).
[PubMed]

F. Jahnke, ed., Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing, to be published).

H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Input/output curves for the ground-state exciton 1Xs (top) or the highest multi-exciton transition (bottom) in resonance with the cavity mode C. Compared are the results from the one-spin (dashed line) and two-spin (solid line) calculation. The parameters are those described in Section 4 and labeled Set A, with the only modification that different electron and hole envelopes are used for the harmonic oscillator wave functions in the calculation of the Coulomb matrix elements in order to obtain a typical ground-state biexciton binding energy of 1meV.

Fig. 2
Fig. 2

Input/output curves (left) and emission spectra (right) for a SQD laser with the cavity resonance (C) at the 1Xs exciton (top), the 1 X s ± charged exciton (middle) and 2Xsp biexciton transition (bottom). The contributions to the total mean photon number (solid line) from the emission of the exciton (dashed line), the sum of the charged excitons (dotted line), and biexciton (dashed dotted line) are shown separately. Cavity emission spectra are shown for capture rates of 6 × 10−4, 3 × 10−2, 6 × 10−2 (only top panel), 0.4 and 100/ps from bottom to top. The energy axis is chosen relative to the 1Xs exciton recombination. Spectral peaks from three transitions are visible, separated by the Coulomb interaction, with an electron-hole exchange interaction of 2.6meV that we use throughout this paper. Calculations were performed with Parameter Set A, cf. the text.

Fig. 3
Fig. 3

Autocorrelation functions g (2)(0) for the three cases in Fig. 2 where the cavity is on resonance with either the exciton (red), the charged exciton (blue) or the biexciton (green line) transition. For the green curve the photon statistics is shown in Fig. 4 for three selected capture rates.

Fig. 4
Fig. 4

Photon statistics for low, intermediate and high capture rates 5 × 10−3, 0.14, and 100/ps and the cavity being on resonance with the biexciton transition (corresponding to the bottom left panel of Fig. 2). The photon statistics for a perfectly thermal and coherent system with the same mean photon number, denoted by + and ×, respectively, has been added for comparison. Note the logarithmic scale in the left panel.

Fig. 5
Fig. 5

SQD emission with additional cavity feeding, as described in the text. Parameter Set A with cavity feeding parameters α = 0.007 and S = 3.0 have been used, the cavity is on resonance with the exciton transition. Left: The input/output curve demonstrates how cavity feeding takes over the photon production after the exciton transition quenches. The gray curve corresponds to a calculation using Eq. (8) instead of Eq. (9) for the cavity feeding. Contributions from all emission channels are shown separately as dashed, dotted and dash-dotted line, cf. Fig. 2. Right: Selected cavity emission spectra at capture rates of 5 × 10−4, 0.02, 0.05, 0.2 and 100/ps.

Fig. 6
Fig. 6

Left: Photon statistics for the highest capture rate of 100/ps in Fig. 5. Right: Autocorrelation function corresponding to the input/output curve in the left panel of Fig. 5. The gray curve corresponds to a calculation using Eq. (8) instead of Eq. (9) for the cavity feeding.

Fig. 7
Fig. 7

Left: Input/output curve for Parameter Set B (see text) and the cavity in resonance with the exciton transition. Contributions from all emission channels are shown separately as dashed, dotted and dash-dotted line, cf. Fig. 2. Middle: Corresponding cavity emission spectra for capture rates of 10−3, 0.14 and 100/ps. Right: Corresponding photon statistics in the regime of stimulated emission for a capture rate of 0.14/ps. For further explanation refer to previous figures.

Fig. 8
Fig. 8

Left: Input/output curve for Parameter Set C and the cavity in resonance with the biexciton transition. Contributions from all emission channels are shown separately as dashed, dotted and dash-dotted line, cf. Fig. 2. Middle: Cavity emission spectra for capture rates of 10−3, 0.2 and 100/ps. Right: Photon statistics in the regime of stimulated emission for a capture rate of 100/ps. For further explanation refer to the previous figures.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

t ρ = i [ H JC + H Coul , ρ ] + L nl ρ + L C ρ + L scatt ρ + L capt ρ
H JC = i , j g i , j [ b a i a j + b a j a i ] .
L scatt ρ = i , j γ i j 2 ( 2 a i a j ρ a j a i a j a i a i a j ρ ρ a j a i a i a j ) ,
L capt ρ = i γ i in 2 ( 2 a i ρ a i a i a i ρ ρ a i a i ) + γ i out 2 ( 2 a i ρ a i a i a i ρ ρ a i a i )
L nl ρ = i , j γ i j nl 2 ( 2 a i a j ρ a j a i a j a i a i a j ρ ρ a j a i a i a j ) .
L C ρ = κ 2 ( 2 b ρ b b b ρ ρ b b ) .
S ( ω ) = g ( 1 ) ( t s s , τ ) .
t ρ | cf = Γ 2 ( 2 b ρ b b b ρ ρ b b ) .
t ρ n , m | cf = ρ n 1 , m 1 Γ n m ( 1 + S Δ n , m ) ( 1 + S Σ n , m ) ρ n , m Γ [ Δ n + 1 , m + 1 1 + S Δ n + 1 , m + 1 + Σ n + 1 , m + 1 1 + S Σ n + 1 , m + 1 ] ,
H Coul = i = s , p ( ɛ i e n i e + ɛ i h n i h D i i e h n i e n i h ) + D s p e e n s e n p e + D s p h h n s h n p h D s p e h n s e n p h D s p e h n s h n p e X s p e e n s e n p e X s p h h n s h n p h ,
1 τ s p = 4 g 2 κ + γ ,
R X = f X τ s p .

Metrics