Abstract

We report an ultra-long Raman laser that implemented a variable pumping scheme in backward and forward configurations. Rayleigh backscattering effects were realized in the 51 km fiber length that functioned as a virtual mirror at one fiber end. With the employment of a fiber Bragg grating that has a peak reflection wavelength at 1553.3 nm, spectral broadening effects were observed. These occurred as the pump power level was diverted more to the forward direction. Owing to this fact, a maximum width of 0.9 nm was measured at 100% forward pumping. The obtained results show that the efficient exploitation of four-wave mixing interactions as well as strong Rayleigh backscattering are beneficial to influence the lasing performances. Both of these nonlinear responses can be adjusted by varying pumping distributions along the fiber longitudinal dimension.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
    [CrossRef]
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).
  4. M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
    [CrossRef]
  5. S. Klein, O. Cregut, D. Gindre, A. Boeglin, and K. D. Dorkenoo, “Random laser action in organic film during the photopolymerization process,” Opt. Express 13(14), 5387–5392 (2005).
    [CrossRef] [PubMed]
  6. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  7. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
    [CrossRef] [PubMed]
  8. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
    [CrossRef]
  9. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
    [CrossRef]
  10. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  11. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [CrossRef]
  12. V. Karalekas, J. D. Ania-Castanon, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007).
    [CrossRef] [PubMed]
  13. S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, E. V. Podivilov, and S. K. Turitsyn, “Ultra-long Raman laser with a feedback based on the Rayleigh scattering,” in Conference on Lasers and Electro-Optics Europe (IEEE, 2009), paper 5194622.
  14. V. Karalekas, S. Kablukov, P. Harper, J. D. Ania Castanon, S. A. Babin, and S. K. Turitsyn, “165 km ultra-long Raman fiber laser in the C-band,” in 34th European Conference on Optical Communication (ECOC, 2008), paper Mo.3.B.5.
  15. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [CrossRef] [PubMed]
  16. D. J. Spence, Y. Zhao, S. D. Jackson, and R. P. Mildren, “An investigation into Raman mode locking of fiber lasers,” Opt. Express 16(8), 5277–5289 (2008).
    [CrossRef] [PubMed]
  17. D. J. Spence and R. P. Mildren, “Mode locking using stimulated Raman scattering,” Opt. Express 15(13), 8170–8175 (2007).
    [CrossRef] [PubMed]

2010

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

2008

2007

2005

2002

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
[CrossRef]

1996

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

1995

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
[CrossRef]

1988

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

1986

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).

1968

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Ania Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Ania-Castanon, J. D.

Babin, S. A.

Bahoura, M.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
[CrossRef]

Boeglin, A.

Briskina, C. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[CrossRef]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

Cregut, O.

Dorkenoo, K. D.

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Gindre, D.

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

V. Karalekas, J. D. Ania-Castanon, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007).
[CrossRef] [PubMed]

Ismagulov, A. E.

Jackson, S. D.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

V. Karalekas, J. D. Ania-Castanon, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007).
[CrossRef] [PubMed]

Kean, P. N.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Klein, S.

Lagendijk, A.

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Markushev, V. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).

Mildren, R. P.

Morris, K. J.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
[CrossRef]

Noginov, M. A.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
[CrossRef]

Podivilov, E. V.

Reid, D. C. J.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Rowe, C. J.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Sibbett, W.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Sinclair, B. D.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Smith, K.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

Spence, D. J.

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

V. Karalekas, J. D. Ania-Castanon, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007).
[CrossRef] [PubMed]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
[CrossRef]

Zhao, Y.

Zolin, V. F.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).

J. Mod. Opt.

P. N. Kean, B. D. Sinclair, K. Smith, W. Sibbett, C. J. Rowe, and D. C. J. Reid, “Experimental evaluation of a fiber Raman oscillator having fiber grating reflectors,” J. Mod. Opt. 35(3), 397–406 (1988).
[CrossRef]

J. Phys. A

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[CrossRef]

Nat. Photonics

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Nat. Phys.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Nature

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Random laser?” Nature 373(6511), 203–204 (1995).
[CrossRef]

Opt. Commun.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201(4-6), 405–411 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

Sov. Phys. JETP

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Zh. Prikl. Spektrosk.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk. 45, 847–850 (1986).

Other

A. E. Siegman, Lasers (University Science Books, 1986).

S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, E. V. Podivilov, and S. K. Turitsyn, “Ultra-long Raman laser with a feedback based on the Rayleigh scattering,” in Conference on Lasers and Electro-Optics Europe (IEEE, 2009), paper 5194622.

V. Karalekas, S. Kablukov, P. Harper, J. D. Ania Castanon, S. A. Babin, and S. K. Turitsyn, “165 km ultra-long Raman fiber laser in the C-band,” in 34th European Conference on Optical Communication (ECOC, 2008), paper Mo.3.B.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental layout of an ULRFL arranged in backward and forward pumping configurations. The couplers of 10/90%, 20/80%, 30/70%, 40/60% and 50/50% were connected separately to the WDM’s. The dashed boxes indicate pumping geometrical designs, where those for 100% backward and forward directions are shown in the inset.

Fig. 2
Fig. 2

Lasing performances in the 100% backward pumping architecture, (a) spectral profiles and (b) the corresponding spectral width and output power developments.

Fig. 3
Fig. 3

(Above) Simplified diagram of the backward-pumped fibre laser. (Below) Propagation of Raman photons in the laser structure where L 0 , b and L max , B represent the initial and maximum fiber lengths, respectively. The subscript " b " in these parameters signifies “backward” which refers to the pumping setup.

Fig. 4
Fig. 4

Lasing properties in the 100% forward pumping design, (a) spectral evolutions and (b) the corresponding spectral width and CW performance.

Fig. 5
Fig. 5

(Above). Simplified diagram of the fiber laser that incorporated 100% forward pumping. (Below) Propagation of Raman photons in the laser structure where L 0 , f and L max , f represent the initial and maximum fiber lengths, respectively. The subscript " f " in these parameters signifies “forward” that refers to the pumping setup.

Fig. 6
Fig. 6

Comparisons between spectral and output power progressions at various coupling ratios.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C R = P f P T

Metrics