Abstract

A novel fiber Bragg grating (FBG) has been inscribed in all solid Bragg fiber by an infrared femtosecond laser. Temperature, strain and bending characteristics of the induced FBG are investigated experimentally. Four resonant dips in the transmission spectrum show positive sensitivity for temperature/strain and zero-sensitivity for bending in wavelength. Cross-sensitivity between strain/temperature and bending can thus be avoided since the resonant wavelengths are insensitive to curvature variation when the fiber is bent toward two opposite directions. Evident wavelength hysteresis is observed during the isochronal annealing test and it can be eliminated by a pre-annealing treatment. These proposed FBGs are very attractive candidates for multi-parameter sensors in harsh environment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  2. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
    [CrossRef]
  3. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett. 30(14), 1785–1787 (2005).
    [CrossRef] [PubMed]
  4. O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
    [CrossRef]
  5. Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
    [CrossRef]
  6. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
    [CrossRef] [PubMed]
  7. Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett. 30(4), 367–369 (2005).
    [CrossRef] [PubMed]
  8. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
    [CrossRef]
  9. M. Yan and P. Shum, “Analysis of perturbed Bragg fibers with an extended transfer matrix method,” Opt. Express 14(7), 2596–2610 (2006).
    [CrossRef] [PubMed]
  10. K. J. Rowland, S. V. Afshar, and T. M. Monro, “Novel Low-Loss Bandgaps in All-Silica Bragg Fibers,” J. Lightwave Technol. 26(1), 43–51 (2008).
    [CrossRef]
  11. H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17(19), 17130–17135 (2009).
    [CrossRef] [PubMed]
  12. D. Chen, T.-J. Yang, J.-J. Wu, L. Shen, K.-L. Liao, and S. He, “Band-rejection fiber filter and fiber sensor based on a Bragg fiber of transversal resonant structure,” Opt. Express 16(21), 16489–16495 (2008).
    [CrossRef] [PubMed]
  13. L. Ma, T. Katagiri, and Y. Matsuura, “Surface-plasmon resonance sensor using silica-core Bragg fiber,” Opt. Lett. 34(7), 1069–1071 (2009).
    [CrossRef] [PubMed]
  14. O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
    [CrossRef]
  15. M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
    [CrossRef] [PubMed]
  16. L. Jin, Z. Wang, Q. Fang, Y. G. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
    [CrossRef] [PubMed]
  17. C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, W. Jin, and C. Lu, “Studies on Strain and Temperature Characteristics of a Slanted Multimode Fiber Bragg Grating and Its Application in Multiwavelength Fiber Raman Ring Laser,” J. Lightwave Technol. 24(6), 2394–2400 (2006).
    [CrossRef]
  18. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
    [CrossRef]
  19. M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
    [CrossRef]
  20. L. Jin, W. Jin, and J. Ju, “Directional Bend Sensing With a CO2-Laser-Inscribed Long Period Grating in a Photonic Crystal Fiber,” J. Lightwave Technol. 27(21), 4884–4891 (2009).
    [CrossRef]

2011 (1)

2010 (1)

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

2009 (4)

2008 (4)

2007 (1)

2006 (3)

2005 (3)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1993 (1)

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
[CrossRef]

Afshar, S. V.

Albert, J.

Amaral, L. M. N.

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Araujo, F. M.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Baptista, J. M.

M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
[CrossRef] [PubMed]

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Bartelt, H.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Bay, H.-W.

Bayon, J. F.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Bernage, P.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Bezawada, N.

Bigot, L.

Bookey, H. T.

Bouwmans, G.

Canning, J.

Carvalho, J. P.

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

Chen, C.

Chen, D.

Dasgupta, S.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Demokan, M. S.

Dong, X.

Douay, M.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Ecke, W.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Fang, Q.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

Ferreira, M. S.

Fertein, E.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Fevrier, S.

M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
[CrossRef] [PubMed]

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Frazao, O.

M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
[CrossRef] [PubMed]

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Georges, T.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Groothoff, N.

Hao, J.

He, S.

Hu, J.

Jamier, R.

M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
[CrossRef] [PubMed]

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Jin, L.

Jin, W.

Ju, J.

Kai, G.

Kar, A. K.

Katagiri, T.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Khopin, V.

Kobelke, J.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Laronche, A.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Li, Z.

Liao, K.-L.

Liu, B.

Liu, Y. G.

Lu, C.

Lyytikainen, K.

Ma, L.

Marom, E.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
[CrossRef]

Martelli, C.

Matsuura, Y.

McCarthy, J. E.

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Monro, T. M.

Niay, P.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Pal, B. P.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Quiquempois, Y.

Rothardt, M.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Rowland, K. J.

Roy, P.

M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, and O. Frazao, “Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature,” Opt. Lett. 36(6), 993–995 (2011).
[CrossRef] [PubMed]

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

Salganskii, M.

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

Shen, L.

Shum, P.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Sysoliatin, A.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Wang, Y. P.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Wang, Z.

Willsch, R.

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Wu, J.-J.

Xie, W. X.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

Yan, M.

Yang, T.-J.

Yang, X.

Yariv, A.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
[CrossRef]

Yu, X.

Zhao, C.-L.

Zhu, Y.

IEEE Photon. Technol. Lett. (2)

O. Frazao, L. M. N. Amaral, J. M. Baptista, P. Roy, R. Jamier, and S. Fevrier, “Strain and Temperature Discrimination using Modal Interferometry in Bragg Fibers,” IEEE Photon. Technol. Lett. 22(21), 1616–1618 (2010).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal Hysteresis of Bragg Wavelengths of Intra-core Fiber Gratings,” IEEE Photon. Technol. Lett. 5(11), 1331–1334 (1993).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. B 68(9), 1196–1201 (1978).
[CrossRef]

Laser Photon. Rev. (1)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

Meas. Sci. Technol. (2)

O. Frazão, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibers,” Meas. Sci. Technol. 16(10), 2109–2113 (2005).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Opt. Commun. (1)

Y. P. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, and M. Rothardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The all solid Bragg fiber used in the experiments. (a) RIP of the Bragg fiber core-pre-form with 12mm diameter. (b) Microscopic photograph for the cross section of all solid Bragg fiber, the bright circles represent high refractive index area and the dark circles represent low refractive index area.

Fig. 2
Fig. 2

Transmission spectrum measured on a 2m-long Bragg fiber by use of a wideband light source (ALS-1550-20) at 1550 nm region.

Fig. 3
Fig. 3

(a) Microscopic image of a FBG fabricated in the all solid Bragg fiber by an 800nm femtosecond laser and a phase mask. (b) The transmission and reflection spectra of the FBG.

Fig. 4
Fig. 4

(a) Simulated effective indices of HE11-, TE01-, HE21-, and EH11-like modes for the all solid Bragg fiber in the wavelength range from 1200 nm to 1700 nm. (b) The electric field and power distribution of these resonant modes.

Fig. 5
Fig. 5

Schematic of the experimental setup for strain sensing.

Fig. 6
Fig. 6

(a) The resonant wavelength drifts of dip A, B, C and D with the increasing longitude strain. (b) The transmission spectra evolution of the FBG under different strain.

Fig. 7
Fig. 7

(a)The resonant wavelength drifts of the FBG when subjected to a short-term thermal exposure from 25°C to 200°C (square represents heating cycle, triangle represents cooling cycle); (b) The spectral evolution of the FBG under a temperature of 25°C (black), 100°C (red) and 170°C (blue).

Fig. 8
Fig. 8

(a) The resonant wavelength drifts of four dips when subjected to short-term thermal exposure from 25°C to 500°C (solid square represents heating cycle, hollow circle represents cooling cycle). (b) The evolution of transmitted power for four dips when the temperature is increased to 500°C.

Fig. 9
Fig. 9

The Bragg wavelength shifts of dip A, B, C and D when the temperature is cycled between 25°C and 500°C after a pre-annealing treatment at 300°C (for 8 hours) has been undertaken (blue square for heating cycle, red triangle for cooling cycle).

Fig. 10
Fig. 10

Sensor output as determined by the matrix method for applied strain and temperature.

Fig. 11
Fig. 11

Schematic of the experimental setups for the bending features of FBG fabricated in the Bragg fiber. (a) Designed for curvature from 0 m−1 to 20 m−1, (b) Designed for curvature from 20 m−1 to 100 m−1.

Fig. 12
Fig. 12

(a) The evolution of location of peak wavelength for four dips with the curvature from −100m−1 to + 100m−1. (b) The evolution of transmission spectra of the induced FBG in Bragg fiber under different bend radiuses.

Tables (1)

Tables Icon

Table 1 Summary of transmission resonances properties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B = λ B ( 1 p e ) ε Z
Δ λ B = λ B ( 1 Λ Λ T + 1 n e f f n e f f T ) Δ T = λ B ( α Λ + α n ) Δ T
[ Δ ε Δ T ] = 1 M [ K T D K T A K ε D K ε A ] [ Δ λ A Δ λ D ]
Δ λ A = 1.1 Δ ε + 9.68 Δ T
Δ λ D = 1.12 Δ ε + 11.2 Δ T
[ Δ ε Δ T ] = 1 1.4784 [ 11.2 9.68 1.12 1.1 ] [ Δ λ A Δ λ D ]

Metrics