Abstract

Oblique plane microscopy (OPM) is a light sheet microscopy technique that uses a single high numerical aperture microscope objective to both illuminate a tilted plane within the specimen and to obtain an image of the tilted illuminated plane. In this paper, we present a new OPM configuration that enables both the illumination and detection focal planes to be swept simultaneously and remotely through the sample volume, enabling high speed volumetric imaging. We demonstrate the high speed imaging capabilities of the system by imaging calcium dynamics in cardiac myocytes in 2D at 926 frames per second and in 3D at 21 volumes per second. In the future, higher frame rate CCD cameras will enable volumetric imaging at much greater rates, leading to new capabilities to study dynamic events in cells at high speeds in two and three dimensions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
    [CrossRef] [PubMed]
  2. E. Niggli and N. Shirokova, “A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events,” Cell Calcium 42(4-5), 379–387 (2007).
    [CrossRef] [PubMed]
  3. V. Lukyanenko and S. Györke, “Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes,” J. Physiol. 521(Pt 3), 575–585 (1999).
    [CrossRef] [PubMed]
  4. H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
    [PubMed]
  5. W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
    [PubMed]
  6. A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
    [CrossRef] [PubMed]
  7. D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
    [CrossRef] [PubMed]
  8. G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
    [CrossRef] [PubMed]
  9. N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
    [CrossRef] [PubMed]
  10. R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
    [CrossRef] [PubMed]
  11. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
    [CrossRef] [PubMed]
  12. H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).
  13. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
    [CrossRef]
  14. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  15. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [CrossRef] [PubMed]
  16. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [CrossRef] [PubMed]
  17. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
    [CrossRef] [PubMed]
  18. R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
    [CrossRef] [PubMed]
  19. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
    [CrossRef] [PubMed]
  20. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007).
    [CrossRef] [PubMed]
  21. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
    [CrossRef]
  22. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time slit scanning microscopy in the meridional plane,” Opt. Lett. 34(10), 1504–1506 (2009).
    [CrossRef] [PubMed]
  23. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
    [CrossRef] [PubMed]

2011 (1)

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

2010 (2)

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

2009 (4)

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time slit scanning microscopy in the meridional plane,” Opt. Lett. 34(10), 1504–1506 (2009).
[CrossRef] [PubMed]

2008 (4)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
[CrossRef] [PubMed]

C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

2007 (3)

2006 (1)

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
[CrossRef] [PubMed]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

2000 (1)

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

1999 (1)

V. Lukyanenko and S. Györke, “Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes,” J. Physiol. 521(Pt 3), 575–585 (1999).
[CrossRef] [PubMed]

1997 (1)

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

1996 (2)

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

1993 (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
[CrossRef]

1903 (1)

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Balke, C. W.

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

Bauer, S.

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

Bollensdorff, C.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Booth, M. J.

Botcherby, E. J.

Brochet, D. X. P.

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
[CrossRef]

Burton, R. A. B.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Camelliti, P.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Cannell, M. B.

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

Cheng, H.

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Dunsby, C.

Eichhorn, G.

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

Gao, W. D.

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

Garcia, E.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Garny, A.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Gómez, A. M.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Gorelik, J.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Györke, S.

V. Lukyanenko and S. Györke, “Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes,” J. Physiol. 521(Pt 3), 575–585 (1999).
[CrossRef] [PubMed]

Harding, S. E.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Hoenger, A.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Holekamp, T. F.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
[CrossRef] [PubMed]

Holy, T. E.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Ikegaya, Y.

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

Iribe, G.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Jonker, R. M.

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

Juskaitis, R.

Kanda, G. K.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Kempe, M.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
[CrossRef] [PubMed]

Kohl, P.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Korchev, Y. E.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Lab, M. J.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Lakatta, E. G.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Lederer, M. R.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

Lederer, W. J.

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Lukyanenko, V.

V. Lukyanenko and S. Györke, “Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes,” J. Physiol. 521(Pt 3), 575–585 (1999).
[CrossRef] [PubMed]

Lyon, A. R.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

MacLeod, K. T.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Marban, E.

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

Mason, F.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Matsuki, N.

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

Matsumoto, W.

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

Morphew, M. K.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Niggli, E.

E. Niggli and N. Shirokova, “A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events,” Cell Calcium 42(4-5), 379–387 (2007).
[CrossRef] [PubMed]

Patterson, G. H.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Piston, D. W.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Sasaki, T.

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Shirokova, N.

E. Niggli and N. Shirokova, “A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events,” Cell Calcium 42(4-5), 379–387 (2007).
[CrossRef] [PubMed]

Siedentopf, H.

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
[CrossRef]

Spurgeon, H.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Takahashi, N.

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

ter Keurs, H. E.

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

Turaga, D.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
[CrossRef] [PubMed]

van Langevelde, F.

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
[CrossRef]

Ward, C. W.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Wier, W. G.

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

Wilson, T.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Wolleschensky, R.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
[CrossRef] [PubMed]

Xiao, R. P.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Xie, W.

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

Yang, D.

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

Zhang, Y. J.

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Zhou, Y. Y.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Ziman, B.

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

Zimmermann, B.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
[CrossRef] [PubMed]

Zsigmondy, R.

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Am. J. Physiol. (1)

H. Cheng, M. R. Lederer, W. J. Lederer, and M. B. Cannell, “Calcium sparks and [Ca2+]i waves in cardiac myocytes,” Am. J. Physiol. 270(1 Pt 1), C148–C159 (1996).
[PubMed]

Ann. Phys. (1)

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Biophys. J. (1)

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Cell Calcium (2)

H. Cheng, M. R. Lederer, R. P. Xiao, A. M. Gómez, Y. Y. Zhou, B. Ziman, H. Spurgeon, E. G. Lakatta, and W. J. Lederer, “Excitation-contraction coupling in heart: new insights from Ca2+ sparks,” Cell Calcium 20(2), 129–140 (1996).
[CrossRef] [PubMed]

E. Niggli and N. Shirokova, “A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events,” Cell Calcium 42(4-5), 379–387 (2007).
[CrossRef] [PubMed]

Circ. Res. (3)

W. G. Wier, H. E. ter Keurs, E. Marban, W. D. Gao, and C. W. Balke, “Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging,” Circ. Res. 81(4), 462–469 (1997).
[PubMed]

D. X. P. Brochet, W. Xie, D. Yang, H. Cheng, and W. J. Lederer, “Quarky calcium release in the heart,” Circ. Res. 108(2), 210–218 (2011).
[CrossRef] [PubMed]

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. B. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104(6), 787–795 (2009).
[CrossRef] [PubMed]

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11(6), 064011 (2006).
[CrossRef] [PubMed]

J. Microsc. (Paris) (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning - 3-dimensional imaging of macroscopic biological specimens,” J. Microsc. (Paris) 170, 229–236 (1993).
[CrossRef]

J. Physiol. (1)

V. Lukyanenko and S. Györke, “Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes,” J. Physiol. 521(Pt 3), 575–585 (1999).
[CrossRef] [PubMed]

Neuron (1)

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

PLoS ONE (1)

R. M. Jonker, G. Eichhorn, F. van Langevelde, and S. Bauer, “Predation danger can explain changes in timing of migration: the case of the barnacle goose,” PLoS ONE 5(6), e11369 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. R. Lyon, K. T. MacLeod, Y. J. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A. 106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

N. Takahashi, T. Sasaki, W. Matsumoto, N. Matsuki, and Y. Ikegaya, “Circuit topology for synchronizing neurons in spontaneously active networks,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10244–10249 (2010).
[CrossRef] [PubMed]

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (10064 KB)     
» Media 2: MOV (6161 KB)     
» Media 3: MOV (9095 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the OPM system showing a fluorescent sphere as the sample, where green indicates the region in the sample where fluorescence is excited. Ox, objective lens, Tx, tube lens; FPx, focal plane of objective Ox; BFPx, back focal plane of objective Ox; fx, focal length of Tx; C1, cylindrical lens; II, intermediate image of the sample; EM, emission filter; S, slit.

Fig. 2
Fig. 2

Scale diagram illustrating the utilization of the numerical apertures of the three microscope objectives employed. Black arcs indicate the extent of the NA of each lens, with the radius of each arc representing the focal length. Blue lines show the excitation light and green lines show the detected fluorescence. (Note that the telescope formed by T1 and T2 inverts the image, see Fig. 1(a), thus flipping the rays about the horizontal axis between O1 and O2, but this is not shown here for clarity)

Fig. 3
Fig. 3

Fluorescence imaging of a single cardiac myocyte loaded with Fluo-4. (a) Every 100th frame of a 2D image sequence acquired at a resolution of 128 × 64 pixels at 926 fps with playback at 60 fps (Media 1). A spontaneous Ca wave can be clearly seen originating from the top of the cell and the scale bar represents 10 µm. (b) Every 25th frame of a 2D image sequence acquired while the cell was being paced, at a resolution of 128 × 128 pixels at 505 fps with playback at 30 fps (Media 2). Red arrows indicate nuclei.

Fig. 4
Fig. 4

Temporal variation of the fluorescence intensity in the data shown in Fig. 3(b). (a) Temporal variation of normalized fluorescence intensity in the cytosol (red) and nucleus (blue) over three stimulation periods. (b) Temporal dynamics of 8 Ca spark events, showing change in fluorescence, ΔF, over the local baseline value F0 (obtained by averaging the same region of interest for the 20 frames prior to the spark event).

Fig. 5
Fig. 5

Specific time points from a time-lapse 3D acquisition acquired at 21 volumes per second (Media 3). Each time-point has been rendered from two orthogonal viewpoints to show the cell viewed ‘top-down’ (left) and ‘side-on’ (right). (a) A spark occurs at t = 6.72 s, as shown by the red circles. The image brightness and contrast have been adjusted in this panel to aid visualisation of the spark event. (b) Time points illustrating the start of an electrically-stimulated Ca transient. The 3D volume imaged covered 36.3 × 72.6 × 36.1 µm.

Tables (1)

Tables Icon

Table 1 Summary of Lenses Used in OPM System

Metrics