Abstract

We numerically study the impacts of introducing a minute continuous-wave (CW) trigger on the properties of picosecond supercontinuum (SC) generation. We show that this simple triggering approach enables active control of not only the bandwidth, but more importantly the temporal coherence of SC. Detailed numerical simulations suggest that depending on the wavelength of the CW-trigger the multiple higher-order four-wave mixing (FWM) components generated by the CW-trigger can create either a relatively more stochastic or a more deterministic beating effect on the pump pulse, which has significant implications on how soliton fission and the onset of SC are initiated in the presence of noise. By controlling the CW-trigger wavelengths, the rogue solitons emerged in SC generation can exhibit high-degree of temporal coherence and pulse-to-pulse intensity stability. The present study provides a valuable insight on how the initial soliton fission can be initiated in a more controllable manner such that SC generation with both high temporal coherence and stability can be realized.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
    [CrossRef] [PubMed]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  3. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [CrossRef]
  4. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27(22), 2010–2012 (2002).
    [CrossRef] [PubMed]
  5. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  6. K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
    [CrossRef]
  7. G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
    [CrossRef]
  8. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216 (1976).
    [CrossRef]
  9. M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
    [CrossRef]
  10. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005).
    [CrossRef] [PubMed]
  11. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source,” Opt. Lett. 32(20), 3050–3052 (2007).
    [CrossRef] [PubMed]
  12. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
    [CrossRef]
  13. A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, “Raman amplification of modulational instability and solitary-wave formation,” Opt. Lett. 13(11), 1029–1031 (1988).
    [CrossRef] [PubMed]
  14. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [CrossRef] [PubMed]
  15. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [CrossRef] [PubMed]
  16. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
    [CrossRef] [PubMed]
  17. G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [CrossRef]
  18. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
    [CrossRef] [PubMed]
  19. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [CrossRef] [PubMed]
  20. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159 (1989).
    [CrossRef]
  21. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
    [CrossRef] [PubMed]
  22. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
    [CrossRef]
  23. D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
    [CrossRef]
  24. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

2009 (4)

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

2008 (2)

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

1989 (1)

1988 (1)

1986 (1)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216 (1976).
[CrossRef]

1973 (1)

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
[CrossRef]

Akhmediev, N.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

Bang, O.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

Barviau, B.

Boppart, S. A.

Busch, G. E.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
[CrossRef]

Cheung, K. K. Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cotlet, M.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Couderc, V.

De Schryver, F. C.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

de Sterke, C. M.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

Dias, F.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

Dudley, J. M.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B.

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Eggleton, B. J.

Faldon, M. E.

Gapontsev, V. P.

Genty, G.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Goda, K.

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

Gordon, J. P.

Gouveia-Neto, A. S.

Hamaguchi, H. O.

Han, Y.

Hasegawa, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

Haus, H. A.

Héliot, L.

Hofkens, J.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Jalali, B.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[CrossRef]

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

Jones, R. P.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
[CrossRef]

Kano, H.

Kibler, B.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Krueger, A.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Kudlinski, A.

Leproux, P.

Leray, A.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216 (1976).
[CrossRef]

Marks, D. L.

Maus, M.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Mussot, A.

Newbury, N. R.

Okuno, M.

Oldenburg, A. L.

Popov, S. V.

Rentzepis, P. M.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
[CrossRef]

Reynolds, J. J.

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Rousseau, E.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Rulkov, A. B.

Schweitzer, G.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Skryabin, D. V.

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

Solli, D.

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Spriet, C.

Stolen, R. H.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159 (1989).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216 (1976).
[CrossRef]

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

Taylor, J. R.

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

Tomlinson, W. J.

Tsia, K. K.

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

Van der Auweraer, M.

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Vyatkin, M. Y.

Washburn, B. R.

Wong, K. K. Y.

Zhang, C.

Zhou, Y.

Appl. Phys. B (1)

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49(5), 236 (1986).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18(2), 178–185 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Lett. A (1)

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010).
[CrossRef]

Phys. Rev. A (1)

K. Goda, D. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Maus, E. Rousseau, M. Cotlet, G. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of the (a) untriggered and (b) CW-triggered SC generation. If the CW-trigger wavelength can be tuned such that it can experience MI gain, the resultant SC characteristics, such as the bandwidth, power, and the pulse-to-pulse fluctuation, can be modified.

Fig. 2
Fig. 2

Comparisons between (a, b, c) the untriggered SC and (d, e, f) the CW-triggered SC. (a) The untriggered and (d) the CW-triggered SC spectra. The individual spectra from the simulation ensemble (gray; for clarity only 50 shots are plotted) with the calculated average spectrum from the 1000 simulation runs (back curve); The first-order temporal coherence of the (b) untriggered and (e) CW-triggered SC; The histograms of the peak power distribution of the (c) untriggered and (f) CW-triggered SC. The histograms are plotted for the 1000 events after a long-pass filter (>1850 nm) using 10 W bins.

Fig. 3
Fig. 3

(a) The CW-triggered SC spectra and (b) the corresponding temporal coherence spectra for Ω = –50, –100, –150, –200, –250, –300, –350, and –400 ( λ = 1573, 1592, 1612, 1631, 1652, 1673, 1694, and 1716 nm, from top to bottom) respectively.

Fig. 4
Fig. 4

(a) The bandwidths of the CW-triggered SC spectra (measured at –50 dB level in Fig. 3(a)) versus |Ω|; (b) The overall temporal coherence of the CW-triggered SC spectra versus |Ω|; (c) the temporal coherence beyond the 1850 nm CW-triggered SC spectra versus |Ω|. Note that for Ω = –400, the coherence (>1850 nm) is as high as 0.745 (not shown in the plot). Dots and circles represent the results for negative and positive Ω, respectively. The dashed lines represent the results of the untriggered SC.

Fig. 5
Fig. 5

(a) Spectral and (b) temporal evolution for untriggered SC generation. The spectra and temporal pulse shapes are shown in every 5 m (from bottom to top, z = 0, 5, 10, …, 50 m). The inset shows the enlarged view of the temporal pulse at 25 m.

Fig. 6
Fig. 6

(a) Spectral and (b) temporal evolution of the CW-triggered SC generation (Ω = −179.7, λ = 1624 nm). The spectra and temporal pulse shapes are shown in every 5 m (from bottom to top, z = 0, 5, 10, …, and 50 m). The inset shows the enlarged view of the temporal pulse at 20 m.

Fig. 7
Fig. 7

(a) Spectral and (b) temporal evolution of the CW-triggered SC generation ( Ω = −400, λ = 1716 nm). The spectra and temporal pulse shapes are shown in every 5 m (from bottom to top, z = 0, 5, 10, …, and 50 m). The inset shows the enlarged view of the temporal pulse at 10 m.

Fig. 8
Fig. 8

CW-triggered SC spectra at (a) Ω = −50, λ = 1573 nm (c) Ω = −250, λ = 1652 nm (e) Ω = −400, λ = 1716 nm. The individual spectra from the simulation ensemble (gray; for clarity only 50 shots are plotted) with the calculated average spectrum from the 1000 simulation runs (black curve). Histograms of the peak power distribution for the cases of (b) Ω = −50, λ = 1573 nm, (d) Ω = −250, λ = 1652 nm, and (f) Ω = −400, λ = 1716 nm. The histograms are plotted for the 1000 events after a long-pass filter (>1850 nm) using 10 W bins.

Fig. 9
Fig. 9

Temporal pulses (for clarity, only 20 shots are plotted) after passing SC spectra through a long-pass filter (>1850 nm) for the (a) untriggered SC, (b) CW-triggered SC for Ω = −179.7 and λ = 1624 nm, and (c) CW-triggered SC for Ω = −400 and λ = 1716 nm.

Tables (1)

Tables Icon

Table 1 Comparison of the Effects on SC Characteristics by Different CW-Trigger Wavelengths (Untriggered SC is also Included)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 2 2 A t 2 β 3 6 3 A t 3 = i γ ( 1 + i τ s h o c k t ) A ( z , t ) + R ( t ' ) | A ( z , t t ' ) | 2 d t ' ,

Metrics