Abstract

This study demonstrated a tunable photonic crystal (PhC) with 70 nm-wide spectral tuning (535 nm to 605 nm) and 3 ms of response time. The tunable PhC is based on reciprocal capillary action of liquid in the nanoscale PhC voids. By wetting the porous silicon PhC with ethanol and water, the PhC can be bistably switched respectively between liquid-filled state (orange color) and vapor-filled state (yellow color). Owing to the energy barrier between the two wetting states, the tunable PhC can remain at either of the two states with no external power consumption.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
    [CrossRef]
  2. J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
    [CrossRef]
  3. H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [CrossRef]
  4. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
    [CrossRef]
  5. K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
    [CrossRef]
  6. T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70(3), 1214–1218 (1979).
    [CrossRef]
  7. Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92(2), 1365–1371 (1990).
    [CrossRef]
  8. M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
    [CrossRef]
  9. C. T. Chan and J. A. Yeh, “Tunable photonic crystal based on capillary attraction and repulsion,” Opt. Express 18(20), 20894–20899 (2010).
    [CrossRef] [PubMed]
  10. V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
    [CrossRef]
  11. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17(6), 4646–4651 (2009).
    [CrossRef] [PubMed]
  12. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
    [CrossRef]
  13. Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
    [CrossRef]
  14. C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
    [PubMed]
  15. D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
    [CrossRef] [PubMed]
  16. C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
    [CrossRef]
  17. D. C. Tretheway and C. D. Meinhart, “A generating mechanism for apparent fluid slip in hydrophobic microchannels,” Phys. Fluids 16(5), 1509–1515 (2004).
    [CrossRef]
  18. K. C. Pratt and W. A. Wakeham, “The mutual diffusion coefficient of ethanol-water mixtures: determination by a rapid, new method,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1606), 393–406 (1974).
    [CrossRef]

2010 (2)

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

C. T. Chan and J. A. Yeh, “Tunable photonic crystal based on capillary attraction and repulsion,” Opt. Express 18(20), 20894–20899 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17(6), 4646–4651 (2009).
[CrossRef] [PubMed]

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

2008 (1)

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

2007 (3)

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
[CrossRef] [PubMed]

2004 (1)

D. C. Tretheway and C. D. Meinhart, “A generating mechanism for apparent fluid slip in hydrophobic microchannels,” Phys. Fluids 16(5), 1509–1515 (2004).
[CrossRef]

2003 (1)

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

2001 (2)

M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
[CrossRef]

2000 (1)

V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
[CrossRef]

1990 (1)

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92(2), 1365–1371 (1990).
[CrossRef]

1979 (1)

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70(3), 1214–1218 (1979).
[CrossRef]

1974 (1)

K. C. Pratt and W. A. Wakeham, “The mutual diffusion coefficient of ethanol-water mixtures: determination by a rapid, new method,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1606), 393–406 (1974).
[CrossRef]

Arsenault, A. C.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Benecke, W.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Binder, K.

D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
[CrossRef] [PubMed]

Breuer, K. S.

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

Chan, C. T.

Chan, H. L. W.

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

Chiu, C. Y.

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

Choi, C. H.

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

Choi, S.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Choy, C.

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

Chyan, J. Y.

Dimitrov, D. I.

D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
[CrossRef] [PubMed]

Fillmore, D. J.

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70(3), 1214–1218 (1979).
[CrossRef]

Garcia, A. A.

M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
[CrossRef]

Ge, J.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Hansen, O.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Hayes, M. A.

M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
[CrossRef]

Hsu, W. C.

Huang, L. Y.

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

Jim, K. L.

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

Johan, K.

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

Kang, Y.

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

Kehlenbeck, M.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Kim, H.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Kim, J.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Knieling, T.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Koblitz, J.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Kwon, S.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Lang, W.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Lee, H.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Lehmann, V.

V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
[CrossRef]

Leung, D. C.

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

Li, Y.

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92(2), 1365–1371 (1990).
[CrossRef]

Luigart, A.

V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
[CrossRef]

Manners, I.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Meinhart, C. D.

D. C. Tretheway and C. D. Meinhart, “A generating mechanism for apparent fluid slip in hydrophobic microchannels,” Phys. Fluids 16(5), 1509–1515 (2004).
[CrossRef]

Mickiewicz, R. A.

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

Milchev, A.

D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
[CrossRef] [PubMed]

Ozaki, M.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
[CrossRef]

Ozin, G. A.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Park, W.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Polson, N. A.

M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
[CrossRef]

Pratt, K. C.

K. C. Pratt and W. A. Wakeham, “The mutual diffusion coefficient of ethanol-water mixtures: determination by a rapid, new method,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1606), 393–406 (1974).
[CrossRef]

Puzzo, D. P.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Rombach, P.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Shen, T. L.

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

Shimoda, Y.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
[CrossRef]

Stengl, R.

V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
[CrossRef]

Tanaka, T.

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92(2), 1365–1371 (1990).
[CrossRef]

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70(3), 1214–1218 (1979).
[CrossRef]

Thomas, E. L.

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

Tretheway, D. C.

D. C. Tretheway and C. D. Meinhart, “A generating mechanism for apparent fluid slip in hydrophobic microchannels,” Phys. Fluids 16(5), 1509–1515 (2004).
[CrossRef]

Wakeham, W. A.

K. C. Pratt and W. A. Wakeham, “The mutual diffusion coefficient of ethanol-water mixtures: determination by a rapid, new method,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1606), 393–406 (1974).
[CrossRef]

Walish, J. J.

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

Wang, C.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Wang, D.

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

Westin, A.

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

Yang, C. Y.

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

Yang, J. T.

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

Yang, Z. H.

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

Yeh, J. A.

C. T. Chan and J. A. Yeh, “Tunable photonic crystal based on capillary attraction and repulsion,” Opt. Express 18(20), 20894–20899 (2010).
[CrossRef] [PubMed]

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17(6), 4646–4651 (2009).
[CrossRef] [PubMed]

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

Yin, Y.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Yoshino, K.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
[CrossRef]

Zhuang, Y. X.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. J. Walish, Y. Kang, R. A. Mickiewicz, and E. L. Thomas, “Bioinspired electrochemically tunable block copolymer full color pixels,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3078–3081 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627–3629 (2001).
[CrossRef]

Eur. Cell. Mater. (1)

C. Y. Yang, L. Y. Huang, T. L. Shen, and J. A. Yeh, “Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces,” Eur. Cell. Mater. 20, 415–430 (2010).
[PubMed]

J. Appl. Phys. (1)

K. L. Jim, D. Wang, D. C. Leung, C. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103(8), 1–6 (2008).
[CrossRef]

J. Chem. Phys. (2)

T. Tanaka and D. J. Fillmore, “Kinetics of swelling of gels,” J. Chem. Phys. 70(3), 1214–1218 (1979).
[CrossRef]

Y. Li and T. Tanaka, “Kinetics of swelling and shrinking of gels,” J. Chem. Phys. 92(2), 1365–1371 (1990).
[CrossRef]

J. Microelectromech. Syst. (1)

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS,” J. Microelectromech. Syst. 16(6), 1451–1460 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, “Investigation and application of an artificially hybridstructured surface with ultrahydrophobic and anti-sticking character,” J. Micromech. Microeng. 19, 085022–085033 (2009).
[CrossRef]

Langmuir (1)

M. A. Hayes, N. A. Polson, and A. A. Garcia, “Active control of dynamic supraparticle structures in microchannels,” Langmuir 17(9), 2866–2871 (2001).
[CrossRef]

Mater. Sci. Eng. B (1)

V. Lehmann, R. Stengl, and A. Luigart, “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69–70, 11–22 (2000).
[CrossRef]

Nat. Photonics (2)

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Opt. Express (2)

Phys. Fluids (2)

C. H. Choi, K. Johan, A. Westin, and K. S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15(10), 2897–2902 (2003).
[CrossRef]

D. C. Tretheway and C. D. Meinhart, “A generating mechanism for apparent fluid slip in hydrophobic microchannels,” Phys. Fluids 16(5), 1509–1515 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

D. I. Dimitrov, A. Milchev, and K. Binder, “Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation,” Phys. Rev. Lett. 99(5), 054501–054504 (2007).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

K. C. Pratt and W. A. Wakeham, “The mutual diffusion coefficient of ethanol-water mixtures: determination by a rapid, new method,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1606), 393–406 (1974).
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (4058 KB)     
» Media 2: MPG (3962 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the tunable PhC driven by reciprocal capillary action.

Fig. 2
Fig. 2

(a) SEM images of the PSiPhC; the periodic structure from the cross section view (left) and the porous surface from the top view (right). (b) the PSiPhC partially immersed in water (left) and 99.5% ethanol (right) (c) the reflectivity spectra of the PSiPhC immersed in water (vapor-filled sate) and 99.5% ethanol (liquid-filled state).

Fig. 3
Fig. 3

Tunable PSiPhC with tic-tac-toe patterns; the orange tic-tac-toe was patterned by ethanol jet (from step 2 to 5). The yellow tic-tac-toe was patterned by water jet (from step 6 to 8).

Fig. 4
Fig. 4

The color changes of the PSiPhC (30 Hz video, 33.3 ms per frame); the ethanol jet turned the PSiPhC into orange color in frame 03 and 33. The water jet returned the PSiPhC to yellow color in frame 18. (Media 1).

Fig. 5
Fig. 5

The dynamic changes of the PSiPhC (300 Hz video, 3.3 ms per frame); the ethanol jet turned the white color of the PSiPhC into dark. The transition from frame 06 to frame 11 is equivalent to a period of time between frame 02 and frame 03 in Fig. 4. (Media 2).

Fig. 6
Fig. 6

Response time measurement of the capillary attraction and the capillary repulsion.

Tables (2)

Tables Icon

Table 1 Tuning Range, Response Time and Powerless Bistability for Tunable PhCs at the Visible Range

Tables Icon

Table 2 Transition Times for the Capillary-Driven Tunable PhC

Metrics