Abstract

We demonstrate dual-color nonlinear excitation of quantum dots positioned onto a gold film at distances up to 40 μm away from a micrometer sized focused laser spot. We attribute the observed remote nonlinear signal to the excitation of two independent surface plasmon polariton (SPP) modes excited at the laser spot in the gold film, which subsequently propagate in a collinear fashion to a distant site and provide the surface field required for nonlinear excitation of the target. This scheme decouples the illuminating photon flux from surface plasmon mediated nonlinear excitation of the target, which provides more control of unwanted heating effects at the target site and represents an attractive approach for surface-mediated femtosecond nonlinear examinations of molecules.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  3. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
    [CrossRef]
  4. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  6. J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
    [CrossRef] [PubMed]
  7. G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res . 8, 1135–1143 (2010).
    [CrossRef]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  9. A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
    [CrossRef]
  10. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
    [CrossRef]
  11. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  12. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
    [CrossRef]
  13. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
    [CrossRef]
  14. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [CrossRef] [PubMed]
  15. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
    [CrossRef] [PubMed]
  16. Y. Wang, C-Yu Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011).
    [CrossRef]
  17. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
    [CrossRef]
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
    [CrossRef]
  19. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
    [CrossRef]
  20. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
    [CrossRef] [PubMed]
  21. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
    [CrossRef] [PubMed]
  22. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
    [CrossRef] [PubMed]
  23. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  24. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
    [CrossRef] [PubMed]
  25. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
    [CrossRef] [PubMed]
  26. J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
    [CrossRef] [PubMed]
  27. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
    [CrossRef] [PubMed]
  28. H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
    [CrossRef]
  29. A. Kuzyk, M. Pettersson, J. J. Toppari, T. K. Hakala, H. Tikkanen, H. Kunttu, and P. Törmä, “Molecular coupling of light with plasmonic waveguides,” Opt. Express 15, 9908–9917 (2007).
    [CrossRef] [PubMed]
  30. J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
    [CrossRef] [PubMed]
  31. J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
    [CrossRef]
  32. C. K. Shen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393–394 (1979).
    [CrossRef] [PubMed]
  33. X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350 (2011).
    [CrossRef] [PubMed]
  34. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
    [CrossRef] [PubMed]
  35. S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
    [CrossRef]
  36. E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  37. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [CrossRef] [PubMed]
  38. A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
    [CrossRef]
  39. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
    [CrossRef]
  40. P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
    [CrossRef]
  41. J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
    [CrossRef] [PubMed]
  42. J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
    [CrossRef]
  43. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
    [CrossRef]

2011 (3)

2010 (4)

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res . 8, 1135–1143 (2010).
[CrossRef]

2009 (4)

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

2008 (3)

S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[CrossRef] [PubMed]

2007 (8)

A. Kuzyk, M. Pettersson, J. J. Toppari, T. K. Hakala, H. Tikkanen, H. Kunttu, and P. Törmä, “Molecular coupling of light with plasmonic waveguides,” Opt. Express 15, 9908–9917 (2007).
[CrossRef] [PubMed]

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
[CrossRef] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

2006 (2)

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

2005 (2)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[CrossRef]

2004 (1)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

2002 (1)

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

2001 (1)

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

2000 (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

1999 (2)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1979 (2)

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393–394 (1979).
[CrossRef] [PubMed]

1977 (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

Baida, F. I.

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Baik, J. M.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[CrossRef] [PubMed]

Benderskii, A. V.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Bordenyuk, A. N.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Bouhelier, A.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Bruyant, A.

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

Chen, C. K.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

Dantus, M.

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[CrossRef] [PubMed]

de Castro, A. R. B.

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393–394 (1979).
[CrossRef] [PubMed]

Dereux, A.

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Dieringer, J. A.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Duyne, R. P. V.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Ewald, M.

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

Felidj, N.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Francs, G. C. d.

Garciá-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Gunn, J. M.

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[CrossRef] [PubMed]

Güntherodt, H.-J.

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Hakala, T. K.

Halas, N. J.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Hao, F.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

Haran, G.

G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res . 8, 1135–1143 (2010).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

High, S. H.

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

Huang, C.

Hulst, N. v.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Huser, Th.

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Ignatovich, F.

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[CrossRef]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Jayathilake, H. D.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Kim, H.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

Krenn, J.R.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Kuipers, L.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
[CrossRef] [PubMed]

Kunttu, H.

Kuzyk, A.

Labeke, D. V.

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Lambrecht, B.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Lee, S. J.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[CrossRef] [PubMed]

Leitner, A.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

Letnes, P. A.

P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Lettan, R. B.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Lin, C-Yu

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

Liu, X.

Liu, Y.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Lozovoy, V. V.

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

Martn-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Mills, D. L.

P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

Moskovits, M.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[CrossRef]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nikolaenko, A.

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

Nordlander, P.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Novotny, L.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[CrossRef]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

Palomba, S.

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Palomda, S.

S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

Penner, R. M.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Pettersson, M.

Pohl, D. W.

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
[CrossRef] [PubMed]

Potma, E. O.

Quidant, R.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Raghunathan, V.

Raschke, M. B.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Renger, J.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

Salerno, M.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

Scheidt, K. A.

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

Schider, G.

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Shen, C. K.

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393–394 (1979).
[CrossRef] [PubMed]

Simonson, I.

P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Stiopkin, I. V.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Taggart, D. K.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Tikkanen, H.

Toppari, J. J.

Törmä, P.

Verhagen, E.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
[CrossRef] [PubMed]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

Wang, Y.

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Weeber, J.-C.

Weeraman, C.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Wei, H.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

Xiang, C.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, H.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

Yatawara, A. K.

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Acc. Chem. Res (1)

G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res . 8, 1135–1143 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lambrecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

J. Am. Chem. Soc. (1)

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. V. Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129, 16249–16256 (2007).
[CrossRef] [PubMed]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

J. Phys. Chem. A (1)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[CrossRef]

J. Phys. Chem. B (2)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon induced photoluminscence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[CrossRef]

J. Phys. Chem. C (2)

A. N. Bordenyuk, C. Weeraman, A. K. Yatawara, H. D. Jayathilake, I. V. Stiopkin, Y. Liu, and A. V. Benderskii, “Vibrational Sum Frequency Generation Spectroscopy of Dodecanethiol on Metal Nanoparticles,” J. Phys. Chem. C 111, 8925–8933 (2007).
[CrossRef]

J. M. Gunn, S. H. High, V. V. Lozovoy, and M. Dantus, “Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces,” J. Phys. Chem. C 114, 12375–12381 (2010).
[CrossRef]

J. Raman Spectrosc. (1)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003).
[CrossRef]

Nano Lett (1)

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett . 7, 334–337 (2007).
[CrossRef] [PubMed]

Nano Lett. (8)

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[CrossRef] [PubMed]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martn-Moreno, F. J. Garciá-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10, 592–596 (2010).
[CrossRef] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrates nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[CrossRef] [PubMed]

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9, 2049–2053 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (4)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

A. Bouhelier, Th. Huser, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. V. Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

P. A. Letnes, I. Simonson, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Phys. Rev. Lett. (9)

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef] [PubMed]

S. Palomda and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95267405 (2005).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (1)

S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Schematic of the experimental setup. (B) Geometry of beam focusing and surface plasmon excitation with an objective lens. (C) Sketch of the patterned gold film (yellow) with extensions partially covered with CdSe quantum dots (green). The overlaid image represents actual data showing the FWM signals at the laser spot and the nonlinearly excited fluorescence from the quantum dots.

Fig. 2
Fig. 2

(A) CCD image showing the laser spot and the leakage radiation of the propagating SPP mode excited by 730 nm p-polarized light. Note that the SPP mode propagates into the gold finger. (B) Image showing the FWM signal at the location of the laser spot, the leakage radiation from a SPP mode at 2ω 1 = ω 2 and the remotely-excited fluorescence from the quantum dots positioned on the gold finger. For this image, the bandpass filter in front of the CCD camera was chosen such that both the fluorescence emission and the FWM radiation was detected.

Fig. 3
Fig. 3

Power dependence of the nonlinearly excited fluorescence (A) and FWM (B) signals. Both the signals and the laser powers of the fundamental beams (λ 1, λ 2) are plotted on a logarithmic scale. (C) Fluorescence and FWM signals as a function of the time delay between the λ 1 and λ 2 beams. The red and blue curves show Gaussian fits to the nonlinear fluorescence and FWM cross correlations, respectively.

Fig. 4
Fig. 4

(A) Nonlinearly excited fluorescence and FWM signals as a function of the polarization orientation of incident laser beams. S-polarized light corresponds to 0 degrees and p-polarized light coincides with 90 degrees in this graph. (B) Fluorescence intensity of the remotely excited quantum dots as a function of incident angle of the collinearly overlapped excitation beams.

Metrics