Abstract

Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2003-2004).
    [PubMed]
  2. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [CrossRef] [PubMed]
  3. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
    [CrossRef] [PubMed]
  4. D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
    [CrossRef]
  5. M. Frenz, K. P. Kostli, G. Paltauf, H. Schmidt-Kloiber, and H. P. Weber, “Reconstruction technique for optoacoustic imaging,” in Biomedical Optoacoustics II, January 23–24, 2001 (SPIE), 130–137.
  6. C. G. A. Hoelen and F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39(31), 5872–5883 (2000).
    [CrossRef] [PubMed]
  7. K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
    [CrossRef]
  8. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
    [CrossRef] [PubMed]
  9. M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [CrossRef] [PubMed]
  10. M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
    [CrossRef] [PubMed]
  11. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
    [CrossRef] [PubMed]
  12. P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008).
    [CrossRef] [PubMed]
  13. M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
    [CrossRef] [PubMed]
  14. D. W. Wilson and H. H. Barrett, “Decomposition of images and objects into measurement and null components,” Opt. Express 2(6), 254–260 (1998).
    [CrossRef] [PubMed]
  15. K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Acoust. Speech Signal Process. 36(5), 757–763 (1988).
    [CrossRef]
  16. K. Konstantinides, “Threshold bounds in SVD and a new iterative algorithm for order selection in Ar models,” IEEE Trans. Signal Process. 39(5), 1218–1221 (1991).
    [CrossRef]
  17. D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
    [CrossRef] [PubMed]
  18. P. Ephrat and J. J. L. Carson, “Measurement of photoacoustic detector sensitivity distribution by robotic source placement,” in 9th Conference on Photons Plus Ultrasound: Imaging and Sensing 2008, January 20–23, 2008 (SPIE).
  19. A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
    [CrossRef]
  20. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
    [CrossRef] [PubMed]
  21. S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15(4), 040501 (2010).
    [CrossRef] [PubMed]
  22. J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
    [CrossRef] [PubMed]

2010

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15(4), 040501 (2010).
[CrossRef] [PubMed]

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

2009

2008

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
[CrossRef] [PubMed]

P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008).
[CrossRef] [PubMed]

2005

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

2002

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

2001

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

2000

1999

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
[CrossRef] [PubMed]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

1998

1996

D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
[CrossRef] [PubMed]

1991

K. Konstantinides, “Threshold bounds in SVD and a new iterative algorithm for order selection in Ar models,” IEEE Trans. Signal Process. 39(5), 1218–1221 (1991).
[CrossRef]

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

1988

K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Acoust. Speech Signal Process. 36(5), 757–763 (1988).
[CrossRef]

Al-Aabed, H.

Anastasio, M. A.

Andreev, V. G.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Ashkenazi, S.

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15(4), 040501 (2010).
[CrossRef] [PubMed]

Barrett, H. H.

Carson, J. J.

Carson, J. J. L.

Chaudhary, G.

de Mul, F. F. M.

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Emelianov, S.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

Ephrat, P.

Esenaliev, R. O.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Frauchiger, D.

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

Frenz, M.

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

Frey, E. C.

D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
[CrossRef] [PubMed]

Hoelen, C. G. A.

Immucci, A.

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Kadrmas, D. J.

D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
[CrossRef] [PubMed]

Karabutov, A. A.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Karpiouk, A.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

Keenliside, L.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
[CrossRef] [PubMed]

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Konstantinides, K.

K. Konstantinides, “Threshold bounds in SVD and a new iterative algorithm for order selection in Ar models,” IEEE Trans. Signal Process. 39(5), 1218–1221 (1991).
[CrossRef]

K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Acoust. Speech Signal Process. 36(5), 757–763 (1988).
[CrossRef]

Kostli, K. P.

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

Kruger, G. A.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
[CrossRef] [PubMed]

Lesage, F.

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

Ng, E.

Niederhauser, J. J.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Paltauf, G.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

Patrick, J.

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Prato, F. S.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
[CrossRef] [PubMed]

P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008).
[CrossRef] [PubMed]

Provost, J.

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
[CrossRef] [PubMed]

Roumeliotis, M.

Seabrook, A.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
[CrossRef] [PubMed]

Stodilka, R. Z.

Su, J.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Tsui, B. M. W.

D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
[CrossRef] [PubMed]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Wang, B.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

Wang, L. V.

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2003-2004).
[PubMed]

Weber, H. P.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

Wilson, D. W.

Xu, M. H.

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Yao, K.

K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Acoust. Speech Signal Process. 36(5), 757–763 (1988).
[CrossRef]

Appl. Opt.

Dis. Markers

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2003-2004).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 918–923 (2001).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process.

K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Acoust. Speech Signal Process. 36(5), 757–763 (1988).
[CrossRef]

IEEE Trans. Med. Imaging

J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28(4), 585–594 (2009).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci.

D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, “An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images,” IEEE Trans. Nucl. Sci. 43(4), 2275–2284 (1996).
[CrossRef] [PubMed]

IEEE Trans. Signal Process.

K. Konstantinides, “Threshold bounds in SVD and a new iterative algorithm for order selection in Ar models,” IEEE Trans. Signal Process. 39(5), 1218–1221 (1991).
[CrossRef]

J. Acoust. Soc. Am.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008).
[CrossRef] [PubMed]

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 15(4), 040501 (2010).
[CrossRef] [PubMed]

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010).
[CrossRef] [PubMed]

Med. Phys.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26(9), 1832–1837 (1999).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. H. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Proc. SPIE

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” Proc. SPIE 4434, 74–80 (2001).
[CrossRef]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Other

M. Frenz, K. P. Kostli, G. Paltauf, H. Schmidt-Kloiber, and H. P. Weber, “Reconstruction technique for optoacoustic imaging,” in Biomedical Optoacoustics II, January 23–24, 2001 (SPIE), 130–137.

P. Ephrat and J. J. L. Carson, “Measurement of photoacoustic detector sensitivity distribution by robotic source placement,” in 9th Conference on Photons Plus Ultrasound: Imaging and Sensing 2008, January 20–23, 2008 (SPIE).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Isometric view of the hemispherical PA imaging array illustrating the transducer arrangement. Columns with transducers lightly shaded in green correspond to zenith angles of 22.5°, 45°, and 67.5° while columns with transducers lightly shaded blue correspond to zenith angles of 33.75°, 56.25°, and 78.75°. (b) Represents an unfolded schematic of (a) whereby each plane of 5 transducers is referenced P1 through P6, with P1 representing the bottom-most row and P6 the top-most row. (c) Summarizes the results of the estimate of effective matrix rank on the 6 different transducer arrangements. (d) Semi-logarithmic plot of the magnitude of the singular values versus singular value index for each of the 6 transducer arrangements. Left-most curve corresponds to the 5 transducer imaging operator while right-most to the 30 transducer imaging operator with intermediate curves represent increasing transducer count from left to right.

Fig. 2
Fig. 2

(a) Displays the estimated matrix rank for variable transducer count and arrangements. (b) Displays the estimated matrix rank for variable measurement space temporal sampling rates. Linear regression for (b) was performed only on the 4 data points contained within region (ii). The line is shown throughout the entire figure to show the expected value of the matrix rank. (c) Compares the expected matrix rank to the measured rank and is plotted as a percent error to highlight the deviation from linearity in regions (i) and (iii). (d) Provides a visual interpretation of the geometry associated with selected singular vectors for the imaging operator corresponding to the 30 transducer, 5 MHz temporal sampling rate. Images (i) through (iv) correspond to singular vectors of index 1, 10, 3632, and 4036.

Fig. 3
Fig. 3

Reconstruction of a simulated point, line, and multi-point source for each of the 6 transducer arrangements. The iterative technique was implemented on the system with 30 transducers and 5 MHz temporal sampling rate (shown in the column second from right). Ideal image based on phantom is shown in the right-most column.

Fig. 4
Fig. 4

Reconstruction of a simulated point, line, and multi-point source for each of the 8 measurement space temporal sampling rates (MHz).

Fig. 5
Fig. 5

4D real-time photoacoustic imaging experiment where data acquisition and image reconstruction were performed in real time. Images were captured from a photoacoustic point-like source translated in the negative x-direction at a velocity of 0.40 mm/s. The interval between 3D photoacoustic images was 1.4 s and rate-limited by the data acquisition transfer speed, computational, and data storage overhead. The first row shows an xy-plane (z = 4 mm). The second row shows the same reconstruction in a zy-plane (x = 7 mm) and the third row displays an xz-plane (y = 11 mm). Each column represents the 3D image data acquired at a specific point in time (indicated along bottom).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g = H f
H = U S V T
α t > > α t + 1
α t / α t + 1 = max ( α j / α j + 1 ) , j = 1 , 2 , M

Metrics