Abstract

We study the shrinkage in acrylamide based photopolymer by measuring the Bragg detuning of transmission diffraction gratings recorded at different slant angles and at different intensities for a range of spatial frequencies. Transmission diffraction gratings of spatial frequencies 500, 1000, 1500 and 2000 lines/mm were recorded in an acrylamide based photopolymer film having 60 ± 5 μm thickness. The grating thickness and the final slant angles were obtained from the angular Bragg selectivity curve and hence the shrinkage caused by holographic recording was calculated. The shrinkage of the material was evaluated for three different recording intensities 1, 5 and 10 mW/cm2 over a range of slant angles, while the total exposure energy was kept constant at 80 mJ/cm2. From the experimental results it can be seen that the shrinkage of the material is lower for recording with higher intensities and at lower spatial frequencies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Digest Tech. Papers 25, 403–406 (1994).
  2. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  3. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
    [CrossRef]
  4. J. Ludman, H. J. Caulfield, and J. Riccobono, eds., Holography for the New Millennium (Springer, 2002), pp. 179–189.
  5. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43(20), 4018–4024 (2004).
    [CrossRef] [PubMed]
  6. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [CrossRef] [PubMed]
  7. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43(14), 2900–2905 (2004).
    [CrossRef] [PubMed]
  8. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [CrossRef]
  9. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002).
    [CrossRef] [PubMed]
  10. V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
    [CrossRef]
  11. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
    [CrossRef]
  12. S. Piazzolla and B. Jenkins, “First harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17(7), 1147–1157 (2000).
    [CrossRef]
  13. J. Lawrence, F. O’Neill, and J. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
    [CrossRef]
  14. M. Ortuño, S. Gallego, C. Garcia, C. Neipp, and I. Pascual, “Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories,” Appl. Opt. 42(35), 7008–7012 (2003).
    [CrossRef] [PubMed]
  15. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33(29), 6797–6804 (1994).
    [CrossRef] [PubMed]
  16. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11(16), 1835–1843 (2003).
    [CrossRef] [PubMed]
  17. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
    [CrossRef]
  18. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
    [CrossRef]
  19. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
    [CrossRef]
  20. I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
    [CrossRef]
  21. E. Mihaylova and V. Toal, “Simple versatile shearing interferometer suitable for measurements on a microscopic scale,” Opt. Lasers Eng. 47(2), 271–273 (2009).
    [CrossRef]

2011

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

2009

E. Mihaylova and V. Toal, “Simple versatile shearing interferometer suitable for measurements on a microscopic scale,” Opt. Lasers Eng. 47(2), 271–273 (2009).
[CrossRef]

2006

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

2005

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

2004

2003

2002

2000

1999

1997

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[CrossRef] [PubMed]

1996

1994

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33(29), 6797–6804 (1994).
[CrossRef] [PubMed]

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Digest Tech. Papers 25, 403–406 (1994).

1993

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Álvarez-Herrero, A.

Babeva, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Baron, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Beléndez, A.

Belenguer, T.

Biles, J.

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Digest Tech. Papers 25, 403–406 (1994).

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

Colvin, V.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

del Monte, F.

Feely, C. A.

Fu, Z.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

Gallego, S.

Gallo, J. T.

Garcia, C.

Harris, A.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Howard, R.

Hwang, H. C.

Jallapuram, R.

Jenkins, B.

Kwon, J. H.

Larson, R.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Lawrence, J.

Leite, E.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Levy, D.

Lion, Y.

Liu, J.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

Martin, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43(14), 2900–2905 (2004).
[CrossRef] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[CrossRef] [PubMed]

McGinn, C.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

Mihaylova, E.

E. Mihaylova and V. Toal, “Simple versatile shearing interferometer suitable for measurements on a microscopic scale,” Opt. Lasers Eng. 47(2), 271–273 (2009).
[CrossRef]

Mintova, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Moreau, V.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Naydenova, I.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43(14), 2900–2905 (2004).
[CrossRef] [PubMed]

Neipp, C.

O’Neill, F.

Ortuño, M.

Pandey, N.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Pascual, I.

Piazzolla, S.

Psaltis, D.

Pu, A.

Ramos, G.

Renotte, Y.

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Sainov, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Schilling, M.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

Toal, V.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

E. Mihaylova and V. Toal, “Simple versatile shearing interferometer suitable for measurements on a microscopic scale,” Opt. Lasers Eng. 47(2), 271–273 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43(14), 2900–2905 (2004).
[CrossRef] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[CrossRef] [PubMed]

Verber, C. M.

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Woo, K. C.

Yovcheva, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Zhao, C.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

V. Colvin, R. Larson, A. Harris, and M. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

J. Opt.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerisable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

E. Mihaylova and V. Toal, “Simple versatile shearing interferometer suitable for measurements on a microscopic scale,” Opt. Lasers Eng. 47(2), 271–273 (2009).
[CrossRef]

Proc. SPIE

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224–229 (1997).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

SID Int. Symp. Digest Tech. Papers

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Digest Tech. Papers 25, 403–406 (1994).

Other

J. Ludman, H. J. Caulfield, and J. Riccobono, eds., Holography for the New Millennium (Springer, 2002), pp. 179–189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical set-up for recording transmission phase holographic gratings.

Fig. 2
Fig. 2

Diffraction efficiency growth (a) and angular selectivity curves (b) for gratings recorded at A(-■-) 1mW/cm2, 80sec; B (-●-) 5mW/cm2, 16sec, C (-▲-) 10mW/cm2, 8sec. The corresponding peak positions in (b) are A (-■-)18.525°; B (-●-)18.483° ; C (-▲-) 18.468°.

Fig. 3
Fig. 3

Diffraction efficiency growth (a) and angular selectivity curves (b) for gratings recorded at A (-■-) 500 lines/mm; B (-●-) 1000 lines/mm, C (-▲-) 1500 lines/mm, D (-▼-) 2000 lines/mm. The corresponding shift in Bragg peak in (b) is A (-■-) 0.08°; B (-●-) 0.12°; C (-▲-) 0.15°; D (-▼-) 0.3°.

Fig. 4
Fig. 4

Bragg peak shift with respect to the initial slant angles for spatial frequencies 500 lines/mm (a) 1000 lines/mm (b), 1500 lines/mm(c) and 2000 lines/mm(d) for gratings recorded at A (■) −1 mW/cm2; B (●)- 5 mW/cm2, C (▲)- 10 mW/cm2.

Fig. 5
Fig. 5

Dependence of the new slant angle on the initial slant angle for recording intensity 10mW/cm2 . at 1000 lines/mm, shrinkage-1.08%.

Fig. 6
Fig. 6

Dependence of shrinkage on spatial frequency for recording intensities A (-■-) 1 mW/cm2, B (-●-) 5mW/cm2, C (-▲-) 10 mW/cm2 for 60 ± 5 μm layers.

Fig. 7
Fig. 7

Diffraction efficiency growth (a) and angular selectivity curves (b) for gratings recorded in layers of thickness A (-■-) 30 μm; B (-●-) 60 μm, C (-▲-) 120 μm. The corresponding position of Bragg peak in (b) are A (-■-) 15.441°, B (-●-) 15.375°,C (-▲-) 15.31°.

Fig. 8
Fig. 8

Dependence of refractive index modulation with exposure time (a) and percentage shrinkage on sample thickness (b) for thickness A (■) −30μm, B (●) −60μm, C (▲)-120μm.

Tables (1)

Tables Icon

Table 1 Photopolymer Composition

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ d d = tan φ 1 tan φ 0 1

Metrics