Abstract

We demonstrate an initially twisted pi cell fabricated by doping silica nanoparticles into the conventional pi cell. With AC high voltage, the director distortion of the liquid crystals (LCs) near the substrate surface creates a lifting force, which moves the silica nanoparticles toward the substrate surfaces. The accumulated silica nanoparticles on the substrate surfaces stabilize the LCs at the twisted pi state when the AC high voltage is turned off. The formed twisted pi state is permanent. The operation voltage and the response time of the initially twisted pi cell are less than those of the conventional pi cell.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2003).
  2. A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
    [CrossRef] [PubMed]
  3. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
    [CrossRef] [PubMed]
  4. D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
    [CrossRef] [PubMed]
  5. L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
    [CrossRef]
  6. http://en.wikipedia.org/wiki/Dielectrophoresis
  7. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor and Francis, 1996).
  8. R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991).
    [CrossRef]
  9. D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
    [CrossRef]
  10. C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
    [CrossRef]
  11. C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
    [CrossRef] [PubMed]
  12. P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
    [CrossRef]
  13. H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
    [CrossRef]
  14. C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
    [CrossRef]
  15. X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006).
    [CrossRef]
  16. S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
    [CrossRef]
  17. Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
    [CrossRef]
  18. S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
    [CrossRef]
  19. T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
    [CrossRef]
  20. C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
    [CrossRef]
  21. A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
    [CrossRef] [PubMed]

2011 (1)

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

2009 (2)

C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[CrossRef] [PubMed]

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

2008 (3)

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
[CrossRef]

2007 (3)

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006).
[CrossRef]

2005 (2)

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

2002 (1)

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

2001 (2)

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

1991 (1)

R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991).
[CrossRef]

1984 (1)

P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[CrossRef]

Asakawa, Y.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Baek, J.-I.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

beran,

P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[CrossRef]

Bos, P. J.

P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[CrossRef]

Bose, T. K.

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Chen, J. H.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Chen, T. J.

T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
[CrossRef]

Cheng, Y. H.

T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
[CrossRef]

De Jeu, W. H.

R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991).
[CrossRef]

Eidenschink, R.

R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991).
[CrossRef]

Fujikake, H.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Fung, R. X.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

Hong, S. H.

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Horng, L.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Hourri, A.

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Hsieh, C. T.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

Hsu, L. H.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

Huang, C. Y.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[CrossRef] [PubMed]

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

Huang, S. A.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

Huang, Y. J.

Hwang, S. J.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Kawakita, A.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Kelly, J. R.

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

Kikuchi, H.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Kim, H. Y.

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Kim, J. C.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

Kim, M.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Kim, M. K.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Kim, S. M.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Koehler, K. R.

P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006).
[CrossRef]

Lai, C. C.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Lavrentovich, O. D.

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

Lee, K.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Lee, M. H.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Lee, S. H.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Lee, S. R.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

Lee, Y. H.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Lin, Y. G.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

Lo, K. Y.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

Nanaumi, M.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Noh, J. D.

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Oh, M.-C.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

Pishnyak, O. P.

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

Saito, S.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Sato, H.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Seo, D. S.

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Shih, Y. T.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Shin, J.-H.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

Shiyanovskii, S. V.

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

Sikharulidze, D.

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

Song, H. C.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Srivastava, A. K.

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

Takahashi, T.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Takatuka, N.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Takizawa, K.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Tang, S.

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

Thoen, J.

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Tien, C. J.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Tseng, Y. H.

C. Y. Huang, Y. J. Huang, and Y. H. Tseng, “Dual-operation-mode liquid crystal lens,” Opt. Express 17(23), 20860–20865 (2009).
[CrossRef] [PubMed]

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Voloschenko, D.

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

Wang, Y. W.

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

Wu, S. M.

T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
[CrossRef]

Yamamoto, H.

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

Yang, C. S.

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

Yang, Y. T.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Yokota, K.

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Yoon, T.-H.

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

Yu, X. J.

X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006).
[CrossRef]

Appl. Phys. Lett. (7)

L. H. Hsu, K. Y. Lo, S. A. Huang, C. Y. Huang, and C. S. Yang, “Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals,” Appl. Phys. Lett. 92(18), 181112 (2008).
[CrossRef]

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett. 90(17), 171918 (2007).
[CrossRef]

X. J. Yu and H. S. Kwok, “Fast response film-compensated liquid crystal on silicon display,” Appl. Phys. Lett. 89(3), 031104 (2006).
[CrossRef]

S. R. Lee, J.-H. Shin, J.-I. Baek, M.-C. Oh, T.-H. Yoon, and J. C. Kim, “Initially π-twisted nematic liquid crystal cell stabilized by a fluorinated polymer wall,” Appl. Phys. Lett. 90(16), 163513 (2007).
[CrossRef]

T. J. Chen, Y. H. Cheng, and S. M. Wu, “Twisted liquid crystal pi cell stabilized by polymer-sustained alignment,” Appl. Phys. Lett. 93(22), 221103 (2008).
[CrossRef]

Electron. Lett. (1)

R. Eidenschink and W. H. De Jeu, “Static scattering in filled nematic: new liquid crystal display technique,” Electron. Lett. 27(13), 1195 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (4)

H. Kikuchi, H. Yamamoto, H. Sato, A. Kawakita, K. Takizawa, and H. Fujikake, “Bend-mode liquid crystal cells stabilized by aligned polymer walls,” Jpn. J. Appl. Phys. 44(2), 981–989 (2005).
[CrossRef]

C. Y. Huang, J. H. Chen, C. T. Hsieh, H. C. Song, Y. W. Wang, L. Horng, Y. T. Shih, and S. J. Hwang, “Effect of the polyimide concentration on the memory stability of the silica-nanoparticle-doped hybrid aligned nematic Cell,” Jpn. J. Appl. Phys. 50(2), 021702 (2011).
[CrossRef]

S. H. Lee, S. H. Hong, J. D. Noh, H. Y. Kim, and D. S. Seo, “Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L389–L392 (2001).
[CrossRef]

Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of bend alignment using optical polymerization of UV curable liquid crystalline monomers,” Jpn. J. Appl. Phys. 45(7), 5878–5884 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

P. J. Bos, K. R. Koehler, and beran, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113(1), 329–339 (1984).
[CrossRef]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

A. K. Srivastava, M. Kim, S. M. Kim, M. K. Kim, K. Lee, Y. H. Lee, M. H. Lee, and S. H. Lee, “Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051702 (2009).
[CrossRef] [PubMed]

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 060701 (2002).
[CrossRef] [PubMed]

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii, and O. D. Lavrentovich, “Levitation, lift, and bidirectional motion of colloidal particles in an electrically driven nematic liquid crystal,” Phys. Rev. Lett. 99(12), 127802 (2007).
[CrossRef] [PubMed]

Other (3)

M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2003).

http://en.wikipedia.org/wiki/Dielectrophoresis

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor and Francis, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication principle of the silica nanoparticle doped twisted pi cell.

Fig. 2
Fig. 2

Measured transient transmittances of the SND pi cells after AC high voltage pulse (20 V, 1 kHz, 200 ms) excitation.

Fig. 3
Fig. 3

POM images of the SND pi cells after the AC high voltage pulse (20 V, 1 kHz, 200 ms) excitation: (a), (d) 0 wt%; (b), (e) 0.3 wt%; (c), (f); 0.9wt%. P and A indicate the transmission axes of the polarizer and analyzer, respectively.

Fig. 4
Fig. 4

Optical images of the silica nanoparticles deposited on the substrate surfaces after high voltage pulse excitation. (a) top substrate, 40 V AC 1 kHz; (b) bottom substrate, 40 V AC 1 kHz; (c) top substrate, 40 V DC (negative polarity); (d) bottom substrate, 40 V DC (positive polarity).

Fig. 5
Fig. 5

(a) Normalized voltage dependent transmittance curves of the pristine pi cell and the SND twisted pi cell; (b) measured rise and fall times of the SND twisted pi cells.

Metrics