Abstract

Tm3+-doped β′-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).
    [CrossRef] [PubMed]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
    [CrossRef]
  3. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [CrossRef]
  4. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
    [CrossRef]
  5. H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966).
    [CrossRef]
  6. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
    [CrossRef]
  7. A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
    [CrossRef]
  8. H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
    [CrossRef]
  9. S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
    [CrossRef]
  10. A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
    [CrossRef]
  11. Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
    [CrossRef]
  12. D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
    [CrossRef]
  13. Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010).
    [CrossRef]
  14. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [CrossRef]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [CrossRef]
  16. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
    [CrossRef]
  17. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23(12), 2494–2502 (2006).
    [CrossRef]

2010

Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010).
[CrossRef]

2009

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[CrossRef]

2006

2005

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

2000

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

1999

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

1997

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

1996

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

1995

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

1993

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

1992

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

1971

E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
[CrossRef]

1966

H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966).
[CrossRef]

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Abrahams, S. C.

E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Bagayev, S. N.

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

Bernstein, J. L.

E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
[CrossRef]

Bierstedt, P. E.

H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966).
[CrossRef]

Borchardt, H. J.

H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Butashin, A. V.

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Cano-Torres, J. M.

Capmany, J.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Chen, X. Y.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[CrossRef]

Eichler, H. J.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Findensein, J.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

Galan, M.

Grebe, D.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Griebner, U.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Han, X.

Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Jaque, D.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Kaminskii, A. A.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Keve, E. T.

E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
[CrossRef]

Kim, J.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Kim, S. C.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Kim, S. I.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Kuznetsov, F. A.

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Kwon, T. Y.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Lin, Z.

Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010).
[CrossRef]

Liu, J.

Luo, Z. D.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Macdonald, R.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Mateos, X.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Montoya, E.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

Musha, M.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Nishioka, H.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Odajima, W.

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Pavlyuk, A. A.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Petrov, V.

Rico, M.

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Serrano, M. D.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

Solé, J. G.

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Song, J.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Tang, D. Y.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Tateno, M.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[CrossRef]

Tonelli, M.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[CrossRef]

Ueda, K.

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Valle, F. J.

Viera, G.

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Yang, W. Q.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Yun, S. I.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Zaldo, C.

Zou, Y. Q.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Appl. Phys. Lett.

H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: a ferroelectric laser host,” Appl. Phys. Lett. 8(2), 50–52 (1966).
[CrossRef]

H. Nishioka, W. Odajima, M. Tateno, K. Ueda, A. A. Kaminskii, A. V. Butashin, S. N. Bagayev, and A. A. Pavlyuk, “Femtosecond continuously tunable second harmonic generation over the entire-visible range in orthorhombic acentric Gd2(MoO4)3 crystals,” Appl. Phys. Lett. 70(11), 1366–1368 (1997).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, ““Coherent laser-radar at 2 μm using solid-state lasers,” IEEE,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

J. Alloy. Comp.

Z. Lin, X. Han, and C. Zaldo, “Solid state reaction synthesis and optical spectroscopy of ferroelectric (Gd1-xLnx)2(MoO4)3; with Ln=Yb or Tm,” J. Alloy. Comp. 492(1-2), 77–82 (2010).
[CrossRef]

J. Appl. Phys.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

J. Chem. Phys.

E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of transition-metal molybdates and tungstates. VI,” J. Chem. Phys. 54(7), 3185–3194 (1971).
[CrossRef]

J. Endourol.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Solé, “Spectroscopic and laser gain properties of the Nd3+:β'-Gd2(MoO4)3 non-linear crystal,” J. Phys. Condens. Matter 12(46), 9699–9714 (2000).
[CrossRef]

Laser Phys.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Mater. Lett.

S. I. Kim, J. Kim, S. C. Kim, S. I. Yun, and T. Y. Kwon, “Second harmonic generation in the Gd2(MoO4)3 crystal grown by the Czochralski method,” Mater. Lett. 25(5-6), 195–198 (1995).
[CrossRef]

Opt. Commun.

Y. Q. Zou, X. Y. Chen, D. Y. Tang, Z. D. Luo, and W. Q. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167(1-6), 99–104 (1999).
[CrossRef]

Opt. Mater.

A. A. Kaminskii, A. V. Butashin, H. J. Eichler, D. Grebe, R. Macdonald, K. Ueda, H. Nishioka, W. Odajima, M. Tateno, J. Song, M. Musha, S. N. Bagaev, and A. A. Pavlyuk, “Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal – a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation,” Opt. Mater. 7(3), 59–73 (1997).
[CrossRef]

Phys. Rev.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Phys. Status Solidi

A. A. Kaminskii, H. J. Eichler, D. Grebe, R. Macdonald, S. N. Bagaev, A. A. Pavlyuk, and F. A. Kuznetsov, “High-efficient stimulated-Raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals,” Phys. Status Solidi 153(1), 281–285 (1996) (a).
[CrossRef]

Prog. Quantum Electron.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polished crystal sample of the Tm3+:β'-Gd2(MoO4)3 for experiments with dimensions of about 10 × 7 × 0.93 mm3.

Fig. 2
Fig. 2

Polarized absorption spectra of the Tm3+ doped β′-Gd2(MoO4)3 crystal in a range of 750–850 nm.

Fig. 3
Fig. 3

Polarized absorption and emission cross sections of the Tm3+ doped β′-Gd2(MoO4)3 crystal in a range of 1500–2100 nm.

Fig. 4
Fig. 4

Gain curves of the 3F43H6 transition for the Tm3+:β′-Gd2(MoO4)3 with different values of population inversion P (P = 0.1, 0.2, …, 0.5).

Fig. 5
Fig. 5

Average output power of the Tm3+:β'-Gd2(MoO4)3 laser versus absorbed pump power for different output coupler transmissions.

Fig. 6
Fig. 6

Free running laser spectra of the Tm3+:β'-Gd2(MoO4)3 at the same absorbed pump power of 111 mW for different output coupler transmissions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ EM q ( λ ) = σ GSA q ( λ ) Z l Z u exp ( E zl h c λ 1 k B T ) ,
Z ( scaled ) = Z ( calculated ) × number   of   levels   expected number   of   levels   measured .
σ G q ( λ ) = P σ EM q ( λ ) ( 1 P ) σ GSA q ( λ ) .

Metrics