Abstract

A novel in-fiber modal interferometer based on a long period grating (LPG) inscribed in a two-mode all-solid photonic bandgap fiber (AS-PBGF) is presented. After inserting a small piece of the AS-PBGF into two sections of standard single-mode fiber (SMF) via being spliced slight core offset, LPG is inscribed in the AS-PBGF. The LPG is especially designed to realize the coupling between two core modes of LP01 and LP11 in the AS-PBGF. Two core modes LP01 and LP11 of the AS-PBGF are excited firstly at the input spliced point and actualized energy exchange when they pass through the LPG. Then the two beams will interfere at the output spliced point to form a high-contrast in-fiber modal interferometer. The proposed interferometer has some advantages such as configuration compact, high interference contrast and the wavelength spacing well controlled by changing the position of the LPG without changing the total length of AS-PBGF.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [CrossRef] [PubMed]
  2. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [CrossRef] [PubMed]
  3. J. H. Bo Dong and Z. Xu “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer ,” Opt. Fiber Technol. 17(3), 233–235 (2011).
    [CrossRef]
  4. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  5. M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
    [CrossRef]
  6. B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49(32), 6232–6235 (2010).
    [CrossRef] [PubMed]
  7. Z. B. Tian and S. S. H. Yam, “In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [CrossRef]
  8. W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
    [CrossRef]
  9. Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and Y. Q. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
    [CrossRef] [PubMed]
  10. B. H. Lee and J. J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23(20), 1624–1626 (1998).
    [CrossRef] [PubMed]
  11. B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34(21), 2059–2060 (1998).
    [CrossRef]
  12. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
    [CrossRef]
  13. J. Xu, Y. G. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49(3), 492–496 (2010).
    [CrossRef] [PubMed]

2011

J. H. Bo Dong and Z. Xu “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer ,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and Y. Q. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
[CrossRef] [PubMed]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

2010

2009

2008

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[CrossRef]

2007

1999

1998

B. H. Lee and J. J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23(20), 1624–1626 (1998).
[CrossRef] [PubMed]

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34(21), 2059–2060 (1998).
[CrossRef]

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Badenes, G.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[CrossRef]

Bo Dong, J. H.

J. H. Bo Dong and Z. Xu “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer ,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Caldas, P.

Carvalho, J. P.

Chen, W.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Choi, H. Y.

Deng, M.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Deng, Y. L.

Dong, B.

Farahi, F.

Feng, S.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Geng, Y. F.

Hao, J. Z.

Jha, R.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[CrossRef]

Jian, S.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Kim, M. J.

Knight, J. C.

Latifi, H.

Lee, B. H.

Li, X. J.

Liaw, C. Y.

Lin, B.

Liu, Y. G.

Lou, S.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Lu, W.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Nishii, J.

B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
[CrossRef] [PubMed]

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34(21), 2059–2060 (1998).
[CrossRef]

Nishii, J. J.

Rao, Y.-J.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Santos, J. L.

Tai, B.

Tan, X. L.

Tang, C.-P.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Tian, Z. B.

Tjin, S. C.

Villatoro, J.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[CrossRef]

Wang, L.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Wang, Z.

Xu, J.

Xu, Z.

J. H. Bo Dong and Z. Xu “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer ,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Yam, S. S. H.

Yu, Y. Q.

Zhu, T.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

zou, H.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[CrossRef]

Electron. Lett.

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34(21), 2059–2060 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

W. Chen, S. Lou, L. Wang, S. Feng, H. zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun. 284(12), 2829–2834 (2011).
[CrossRef]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

J. H. Bo Dong and Z. Xu “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer ,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic configuration of the proposed interferometer.

Fig. 2
Fig. 2

The calculated bandgaps and modes of the AS-PBGF, the black curves represent the edges of bandgaps, red and green curves indicate core modes confined with the core. The inset is the structure of PCF.

Fig. 3
Fig. 3

(a)The measured transmission spectrum of the interferometer. The insets are modal distribution for the grating with pitch 620um measured at (i)1550.00 nm, (ii)1582.20 nm, (iii)1597.27nm,and (iv)1609.15nm . (b)Comparison of the measured interference spectra with different length of AS-PBGF. Black and red curves are the measured spectrum of the interferometer for ΔL 1=8.3 cm and ΔL 2=7.0 cm, respectively.

Fig. 4
Fig. 4

Comparison of the spectra of interferometers made up of LPGs with different grating pitch. (a) phase-matching curve of AS-PBGF, spectra of interferometer for the LPGs with a pitch of (b) 610 μm and (c) 620 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

O P D = ( n eff 11 × L 1 + n eff 01 × L 2 ) ( n eff 01 × L 1 + n eff 11 × L 2 ) = Δ n × Δ L .
Δ S = λ 2 Δ n × Δ L .
I max = I 1 + I 2 + 2 I 1 I 2
I min = I 1 + I 2 2 I 1 I 2
V = I max I min I max + I min

Metrics