Abstract

We investigate to generate coherent and frequency-lock optical multi-carriers by using cascaded phase modulators and recirculating frequency shifter (RFS) based on an EDFA loop. The phase and amplitude relation of RF signals on two cascaded phase modulators and the impact of EDFA gain are investigated. Experimental results are in good agreement with the theoretical analysis. The performance of 113 coherent and frequency-lock subcarriers with tone-to-noise ratio larger than 26dB and amplitude difference of 5dB obtained after a tilt filter covering totally 22.6nm shows that this scheme is a promising technique for the coming Tb/s optical communication.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
    [Crossref]
  2. S. Liu, T. T. Ng, D. J. Richardson, and P. Petropoulos. “An optical frequency comb generator as a broadband pulse source,” OFC. OThG7, (2009).
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC. PD2.6, (2009).
  5. J. Yu, X. Zhou, M.-F. Huang, D. Qian, P. N. Ji, T. Wang, and P. Magill, “400Gb/s (4 x 100Gb/s) orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040km SMF-28,” Opt. Express 17(20), 17928–17933 (2009).
    [Crossref] [PubMed]
  6. areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
    [Crossref]
  7. J. Yu, “1.2 Tbit/s orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28,” Electron. Lett. 46(11), 775–777 (2010).
    [Crossref]
  8. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
    [Crossref]
  9. Y. Tang and W. Shieh, “Coherent optical OFDM transmission up to 1 Tb/s per channel,” J. Lightwave Technol. 27(16), 3511–3517 (2009).
    [Crossref]
  10. X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient digital coherent detection of a 1.2-Tb/s 24-carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” OFC. OWO2, (2010).
  11. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6,248 km using SNR maximized second-order DRA in the extended l-band,” OFC. PDPB5, (2009).
  12. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [Crossref] [PubMed]
  13. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
    [Crossref] [PubMed]
  14. A. Bellemare, M. Karasek, M. Rochette, S. LRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [Crossref]
  15. K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
    [Crossref] [PubMed]
  16. J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
    [Crossref]
  17. M. A. Mirza and G. Stewart, “Multiwavelength operation of erbium-doped fiber lasers by period filtering and phase modulation,” J. Lightwave Technol. 27(8), 1034–1044 (2009).
    [Crossref]
  18. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8Tbit/s,” OFC 2010: PDPC1.
  19. J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation of 112 coherent multi-carriers and transmission of 10 Tb/s (112x100Gb/s) single optical OFDM superchannel over 640 km SMF,”OFC 2011 PDP (paper accepted).

2010 (4)

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

J. Yu, “1.2 Tbit/s orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28,” Electron. Lett. 46(11), 775–777 (2010).
[Crossref]

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18(17), 17597–17609 (2010).
[Crossref] [PubMed]

2009 (5)

2007 (1)

2005 (1)

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

2003 (1)

2000 (1)

Bellemare, A.

Bosco, G.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Bull, J. D.

Carena, A.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Chandrasekhar, S.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

Chen, S.

Deng, Z.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

Dong, F.

Ellis, A. D.

Forghieri, F.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Garcia Gunning, F. C.

Gavioli, G.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Healy, T.

Huang, M.-F.

Ji, P. N.

Karasek, M.

Kurokawa, K.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[Crossref]

Li, J.

Li, X.

Lingle, R.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

Liu, J.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

Liu, X.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

LRochelle, S.

Ma, Y.

Magill, P.

Mirza, M. A.

Ngo, N. Q.

Peckham, D. W.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

Poggiolini, P.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Qian, D.

Rochette, M.

Sakamoto, T.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[Crossref]

Savory, S. J.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Shieh, W.

Stewart, G.

Tang, Y.

Tetu, M.

Tian, F.

Tomita, S.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[Crossref]

Torrengo, E.

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

Wang, T.

Xi, L.

Yamamoto, T.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[Crossref]

Yang, Q.

Yao, J.

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

Yu, J.

Zhang, X.

Zhou, D.

Zhou, K.

Zhou, X.

Zhu, B.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

Electron. Lett. (2)

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[Crossref]

J. Yu, “1.2 Tbit/s orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040 km SMF-28,” Electron. Lett. 46(11), 775–777 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010).
[Crossref]

areG. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-wdm long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22(19), 1419–1421 (2010).
[Crossref]

J. Yao, J. Yao, Z. Deng, and J. Liu, “Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator,” IEEE Photon. Technol. Lett. 17(4), 756–758 (2005).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (1)

Other (6)

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8Tbit/s,” OFC 2010: PDPC1.

J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation of 112 coherent multi-carriers and transmission of 10 Tb/s (112x100Gb/s) single optical OFDM superchannel over 640 km SMF,”OFC 2011 PDP (paper accepted).

S. Chandrasekhar, X. Liu, B. Zhu, and D. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC. PD2.6, (2009).

S. Liu, T. T. Ng, D. J. Richardson, and P. Petropoulos. “An optical frequency comb generator as a broadband pulse source,” OFC. OThG7, (2009).

X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient digital coherent detection of a 1.2-Tb/s 24-carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” OFC. OWO2, (2010).

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6,248 km using SNR maximized second-order DRA in the extended l-band,” OFC. PDPB5, (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic configuration of the RFS based on cascade phase modulators.

Fig. 2
Fig. 2

(a) The number of generated subcarriers as a function of modulation index R 1 and R 2 for cascaded phase modulators PM1 and PM2; (b) The number of generated subcarriers as a function of modulation index Rand phase deviation Δ ϕ .

Fig. 3
Fig. 3

(a) The number of generated subcarriers and (b) the normalized calculated power MSD vary with modulation index R(1.5~2.4) and phase deviation Δ ϕ (−0.45π~0.45π).

Fig. 4
Fig. 4

The principle for multi-carriers generation.

Fig. 5
Fig. 5

The optical spectrum of (a) after PM1; (b) after PM2.

Fig. 6
Fig. 6

Optical spectrum after PM2 for different phase deviation.

Fig. 7
Fig. 7

Optical spectrum after OC2 varies with different EDFA output power: (a) 11.5dBm; (b) 15.5dBm; (c) 19.5dBm; (d) 21.5dBm.

Fig. 8
Fig. 8

The amount of generated subcarriers with the tone-to-noise rate lager than 30dB varies with different EDFA output power.

Fig. 9
Fig. 9

Optical spectrum of stable multi-carriers obtained after WSS: (a) total subcarriers obtained; (b) subcarriers from 1562nm to 1564 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E i n exp ( j π V d V π )
E o u t = E c exp ( j π R sin 2 π f s t ) = E o exp ( j 2 π f c t ) exp ( j π R sin 2 π f s t )
E o u t = E o exp ( j 2 π f c t ) exp ( j π R sin 2 π f s t ) = E o { J 0 ( π R ) exp ( j 2 π f c t ) + J 1 ( π R ) [ exp ( j 2 π ( f c + f s ) t ) exp ( j 2 π ( f c f s ) t ) ] + J 2 ( π R ) [ exp ( j 2 π ( f c + 2 f s ) t ) exp ( j 2 π ( f c 2 f s ) t ) ] + J 3 ( π R ) [ exp ( j 2 π ( f c + 3 f s ) t ) exp ( j 2 π ( f c 3 f s ) t ) ] + ... } = n = + J n ( π R ) exp [ j 2 π ( f c + n f s ) ]
E o u t E o n = m + m J n ( π R ) exp [ j 2 π ( f c + n f s ) t ]
E o u t = E c exp ( j π R 1 sin ( 2 π f s t ) ) exp ( j π R 2 sin ( 2 π f s t + Δ ϕ ) ) = E c exp { j π [ R 1 sin ( 2 π f s t ) + R 2 sin ( 2 π f s t + Δ ϕ ) ] } = E c exp [ j π R c sin ( 2 π f s t + φ ) ]
R c = R 1 2 + 2 R 1 R 2 cos Δ ϕ + R 2 2
R c = R 2 + 2 cos Δ ϕ = 2 R cos Δ ϕ 2
E o u t _ 1 E o n = N 1 / 2 N 1 / 2 J n ( π R c ) exp [ j 2 π ( f c + n f s ) t ] = E c n = N 1 / 2 N 1 / 2 J n ( π R c ) exp ( j 2 π n f s t )
F ( t ) = g r exp ( j θ r ) exp ( a r ) n = N 1 / 2 N 1 / 2 J n ( π R c ) exp ( j 2 π n f s t )
E o u t _ 1 = E c n = N 1 / 2 N 1 / 2 J n ( π R c ) exp ( j 2 π n f s t ) E o u t _ 2 = E c n = N 1 / 2 N 1 / 2 J n ( π R c ) exp ( j 2 π n f s t ) + E o u t _ 1 F = E o u t _ 1 ( 1 + F ) E o u t _ 3 = E o u t _ 1 + E o u t _ 2 F = E o u t _ 1 ( 1 + F + F 2 ) ...... E o u t _ K = E o u t _ 1 ( 1 + F + F 2 + ...... + F K )

Metrics