Abstract

We investigate the electromagnetic interaction between a gold nanoparticle and a thin gold film on a glass substrate. The coupling between the particle plasmons and the surface plasmon polaritons of the film leads to the formation of two localized hybrid modes, one low-energy “film-like” plasmon and one high-energy plasmon dominated by the nanoparticle. We find that the two modes have completely different directional scattering patterns on the glass side of the film. The high-energy mode displays a characteristic dipole emission pattern while the low-energy mode sends out a substantial part of its radiation in directions parallel to the particle dipole moment. The relative strength of the two radiation patterns vary strongly with the distance between the particle and the film, as determined by the degree of particle-film hybridization.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  4. E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).
  5. P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
    [CrossRef]
  6. R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127(1), 108–118 (1983).
    [CrossRef]
  7. W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
    [CrossRef]
  8. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
    [CrossRef] [PubMed]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  10. P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
    [CrossRef]
  11. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
    [CrossRef]
  12. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
    [CrossRef]
  13. F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
    [CrossRef] [PubMed]
  14. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
    [CrossRef] [PubMed]
  15. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
    [CrossRef]
  16. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007).
    [CrossRef] [PubMed]
  17. A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
    [CrossRef]
  18. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
    [CrossRef] [PubMed]
  19. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
    [CrossRef]
  20. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  21. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
    [CrossRef]
  22. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [CrossRef] [PubMed]
  23. T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
    [CrossRef]
  24. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
    [CrossRef]
  25. C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  26. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
    [CrossRef]
  27. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
    [CrossRef]
  28. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
    [CrossRef] [PubMed]
  29. T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
    [CrossRef]
  30. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
    [CrossRef] [PubMed]
  31. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
    [CrossRef] [PubMed]
  32. M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
    [CrossRef]
  33. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
    [CrossRef] [PubMed]
  34. W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
    [CrossRef] [PubMed]
  35. N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
    [CrossRef] [PubMed]
  36. T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
    [CrossRef] [PubMed]
  37. P. Johansson, “Electromagnetic Green’s function for layered systems: applications to nanohole interactions in thin metal films,” Phys. Rev. B 83(19), 195408 (2011).
    [CrossRef]
  38. O. J. F. Martin, A. Dereux, and C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11(3), 1073–1080 (1994).
    [CrossRef]
  39. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  40. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]

2011 (2)

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

P. Johansson, “Electromagnetic Green’s function for layered systems: applications to nanohole interactions in thin metal films,” Phys. Rev. B 83(19), 195408 (2011).
[CrossRef]

2010 (4)

N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
[CrossRef] [PubMed]

2007 (4)

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006).
[CrossRef] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

2005 (3)

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

2004 (1)

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[CrossRef]

2003 (1)

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[CrossRef]

2001 (1)

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

2000 (2)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

1999 (1)

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

1997 (1)

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1984 (1)

W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[CrossRef]

1983 (2)

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127(1), 108–118 (1983).
[CrossRef]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).

Ahn, S. H.

W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
[CrossRef] [PubMed]

Alaverdyan, Y.

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Aravind, P. K.

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Bauer, R.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Berndt, R.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

Bozhevolnyi, S. I.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Brian, B.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

Cesario, J.

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Cheylan, S.

Chilkoti, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Degiron, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Dereux, A.

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Driskell, J. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Enoch, S.

Fogel, Y.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Ghoshal, A.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Girard, C.

Gonzalez, M. U.

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[CrossRef]

Hayashi, S.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hill, R. T.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Holland, W. R.

W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[CrossRef]

Hu, M.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Johansson, P.

P. Johansson, “Electromagnetic Green’s function for layered systems: applications to nanohole interactions in thin metal films,” Phys. Rev. B 83(19), 195408 (2011).
[CrossRef]

M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
[CrossRef]

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Käll, M.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
[CrossRef]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Kik, P. G.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

Kim, N. H.

N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
[CrossRef] [PubMed]

Kim, Z. H.

W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
[CrossRef] [PubMed]

Kreiter, M.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).

Kume, T.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Le, F.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lechuga, L. M.

Lee, S. J.

N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lévêque, G.

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lipert, R. J.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Lwin, N. Z.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

Marquez, M.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

Martin, O. J. F.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Metiu, H.

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

Miljkovic, V. D.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Mock, J. J.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Moskovits, M.

N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Mullen, K.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Murray, W. A.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Nordlander, P.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[CrossRef]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

Park, W. H.

W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
[CrossRef] [PubMed]

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Porter, M. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Prodan, E.

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[CrossRef]

Quidant, R.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

Rueda, A.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Ruppin, R.

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127(1), 108–118 (1983).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Sepúlveda, B.

Shegai, T.

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Steele, J. M.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

Stemmler, M.

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

Xu, H. X.

M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
[CrossRef]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[CrossRef]

Yamamoto, K.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

Zauscher, S.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

T. Shegai, B. Brian, V. D. Miljković, and M. Käll, “Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates,” ACS Nano 5(3), 2036–2041 (2011).
[CrossRef] [PubMed]

ChemPhysChem (1)

W. H. Park, S. H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (3)

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[CrossRef]

J. Phys. Chem. C (2)

T. Rindzevicius, Y. Alaverdyan, M. Käll, W. A. Murray, and W. L. Barnes, “Long-range refractive index sensing using plasmonic nanostructures,” J. Phys. Chem. C 111(32), 11806–11810 (2007).
[CrossRef]

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010).
[CrossRef]

J. Raman Spectrosc. (1)

M. Käll, H. X. Xu, and P. Johansson, “Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy,” J. Raman Spectrosc. 36(6-7), 510–514 (2005).
[CrossRef]

N. J. Phys. (1)

A. Rueda, M. Stemmler, R. Bauer, K. Mullen, Y. Fogel, and M. Kreiter, “Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength,” N. J. Phys. 10(11), 113001 (2008).
[CrossRef]

Nano Lett. (7)

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[CrossRef]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

N. H. Kim, S. J. Lee, and M. Moskovits, “Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification,” Nano Lett. 10(10), 4181–4185 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (7)

P. Johansson, “Electromagnetic Green’s function for layered systems: applications to nanohole interactions in thin metal films,” Phys. Rev. B 83(19), 195408 (2011).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic fine particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

W. R. Holland and D. G. Hall, “Frequency-shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[CrossRef]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Surf. Sci. (2)

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure—applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127(1), 108–118 (1983).
[CrossRef]

Z. Naturforsch., A (1)

E. Kretschmann and H. Raether, “Radiative decay of radiative surface plasmons excited by light,” Z. Naturforsch., A 23, 2135–2136 (1968).

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Calculated scattering spectra for a gold sphere with radius R = 30 nm placed at 1 nm distance from the gold film. In addition, spectra for a particle in air and at an air-glass interface are shown. (b) Dispersion relations for the gold film on a glass substrate calculated for different film thicknesses tf using the same line colors as in (a) for different thicknesses. (c, d) Real parts of the electric fields Re{E x} and Re{E z} in the xz-plane at 2 eV and 2.4 eV for 10 nm thick films revealing the charge distributions for the low-energy and high-energy modes, respectively. Insets in (c, d) show glass-side radiation patterns in the substrate-side Fourier plane for the two modes.

Fig. 2
Fig. 2

Fourier images showing the radiation pattern into glass at 2 eV (a, b) and 2.4 eV (c, d) for x-oriented dipoles positioned in air above a 10 nm gold film at a glass substrate. The dipoles are positioned at 1 nm (a, c) and 31 nm (b, d) above the film, respectively.

Fig. 3
Fig. 3

(a) Scattering spectra for a gold sphere (R = 30 nm) in air above an 18 nm thick gold film on a glass substrate calculated for different particle-film distances d. (b) Fourier images showing the radiation pattern into glass at 2.375 eV for different d. We see a characteristic change of the pattern as d increases.

Fig. 4
Fig. 4

(a) Scattering spectra for a gold nanodisk (D = 60 nm, t = 20 nm) placed on a 5 nm glass spacer layer on top of a gold film of thickness tf. In addition, spectra for a nanodisk in air and at an air-glass interface are shown. (b) Dispersion relations similar to Fig. 1 (b), but with a spacer layer on top of the film (inset). (c, d) Real part of the z component of the electric field Re{E z} at energy 1.2 eV and 2.225 eV showing the charge distributions for the low-energy and high-energy modes for a 5 nm thick film, respectively. (e, h) Polar plots show the angular distribution of light scattered in the vertical xz and yz planes for (e) the low-energy and (h) the high-energy mode. (f, g) The corresponding Fourier images for (f) the low-energy and (g) the high-energy mode.

Metrics