Abstract

We proposed and demonstrated a novel practical fiber Bragg grating (FBG) fabrication setup constructed with high performance linear stages, piezoelectric translation (PZT) stages, and a highly stable continuous wave laser. The FBG fabrication system enables writing of long FBGs by a continuous translate–and-write process and allows implementation of arbitrary chirp and apodization. A key innovation is that the local Bragg wavelength is controlled by a simple movement of the phase mask by a PZT in the direction perpendicular to its surface. The focus position of the two writing beams is not changed during the Bragg wavelength change, an intrinsic feature of the design, ensuring simplicity, robustness and stability. Apodization can be achieved by vibrating the phase mask in the direction parallel to its surface by a PZT. Phase steps can also be inserted in FBGs at any desired locations by stepping the same PZT. A long uniform FBG and a linearly chirped FBG are written to demonstrate the performance of the setup.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  2. L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25(11), 787–789 (2000).
    [CrossRef]
  3. J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [CrossRef]
  4. H. P. Li and Y. L. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).
    [CrossRef]
  5. L. Dong and S. Fortier, “Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction,” IEEE J. Quantum Electron. 40(8), 1087–1098 (2004).
    [CrossRef]
  6. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
    [CrossRef]
  7. Y. Qiu, Y. L. Sheng, and C. Beaulieu, “Optimal phase mask for fiber Bragg grating fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
    [CrossRef]
  8. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
    [CrossRef]
  9. Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
    [CrossRef]
  10. M. Gagné, L. Bojor, R. Maciejko, and R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry,” Opt. Express 16(26), 21550–21557 (2008).
    [CrossRef] [PubMed]
  11. H. P. Li, M. Li, Y. L. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).
    [CrossRef]
  12. M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
    [CrossRef]

2008 (1)

2007 (1)

2004 (3)

L. Dong and S. Fortier, “Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction,” IEEE J. Quantum Electron. 40(8), 1087–1098 (2004).
[CrossRef]

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

2003 (1)

H. P. Li and Y. L. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).
[CrossRef]

2001 (1)

J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

2000 (1)

1999 (1)

1995 (1)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
[CrossRef]

1993 (1)

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

Beaulieu, C.

Bojor, L.

Dong, L.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

L. Dong and S. Fortier, “Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction,” IEEE J. Quantum Electron. 40(8), 1087–1098 (2004).
[CrossRef]

Dyer, P. E.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
[CrossRef]

Ejima, S.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Erdogan, T.

J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
[CrossRef]

Fortier, S.

L. Dong and S. Fortier, “Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction,” IEEE J. Quantum Electron. 40(8), 1087–1098 (2004).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Fujita, K.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Gagné, M.

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
[CrossRef]

Gu, C.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kashyap, R.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kimura, S.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Komatsu, C.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Li, H. P.

H. P. Li, M. Li, Y. L. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).
[CrossRef]

H. P. Li and Y. L. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).
[CrossRef]

Li, M.

Liu, Y.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Maciejko, R.

Masuda, Y.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Mizrahi, V.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

Mizutani, Y.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Nakagawa, K.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Nakamura, M.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Pan, J. J.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Poladian, L.

Qiu, Y.

Rothenberg, J. E.

Sheng, Y. L.

Skaar, J.

J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Suzaki, Y.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Wang, L. G.

J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

White, A. E.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

Yamauchi, M.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Yokouchi, T.

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Zhou, F.

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Electron. Lett. (1)

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Dong and S. Fortier, “Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction,” IEEE J. Quantum Electron. 40(8), 1087–1098 (2004).
[CrossRef]

J. Skaar, L. G. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. P. Li and Y. L. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Japn. J. Appl. Phys (1)

M. Nakamura, C. Komatsu, Y. Masuda, K. Fujita, M. Yamauchi, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, K. Nakagawa, and S. Ejima, ““Evolution of optical fiber temperature during fiber Bragg grating fabrication using KrF excimer laser,” Japn. J. Appl. Phys . 43, 147–151 (2004).
[CrossRef]

Opt. Commun. (1)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115(3-4), 327–334 (1995).
[CrossRef]

Opt. Eng. (1)

Y. Liu, J. J. Pan, C. Gu, F. Zhou, and L. Dong, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916–1922 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic diagram of the proposed FBG fabrication setup.

Fig. 2
Fig. 2

Illustration of the principle of the grating's pitch changed by the mutual angle of the interference beams. (a) Overall schematic, (b) Detailed illustration about the lenses and beams.

Fig. 3
Fig. 3

(a) Bragg wavelength against the change of vertical position of the phase mask, Δy. (b) Δθ against Δy (c) illustration of controlling Bragg wavelength.

Fig. 4
Fig. 4

(a) Illustration of the deviation of angles of the mirrors and the change of the half mutual angle of the interference. (b) Deviation of Bragg wavelength against the deviation of the angle of the mirror

Fig. 5
Fig. 5

The position error of the air bearing translation stage.

Fig. 6
Fig. 6

spectra of a 90-mm long uniform FBG.

Fig. 7
Fig. 7

Reflection spectrum of a 50-mm long chirped grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ u v 2 sin θ a i r 2 ,
λ B = n e f f λ u v sin θ a i r 2 .

Metrics