Abstract

We report the observation of Zeno switching through an inverse Raman scattering (IRS) process in an optical fiber. In IRS, light at the anti-Stokes frequency is strongly attenuated in the presence of a pump field, allowing it to be used for all-optical switching and modulation. Our observed level of induced absorption via IRS in the optical fiber is > 20dB in a time scale of less than 5 ps. The full Raman response spectrum was extracted experimentally and excellent agreement was found between the experimental data and theoretical modeling of IRS.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Jensen, “The non-linear coherent coupler,” IEEE J. Quantum Electron. 18(10), 1580–1583 (1982).
    [CrossRef]
  2. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13(10), 904–906 (1988).
    [CrossRef] [PubMed]
  3. G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22(2), 95–122 (1990).
    [CrossRef]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [CrossRef]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  7. B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79(6), 063830 (2009).
    [CrossRef]
  8. L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
    [CrossRef]
  9. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
    [CrossRef]
  10. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  12. W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra - induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
    [CrossRef]
  13. Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
    [CrossRef]
  14. J. Stone, “Inverse Raman-scattering - continuous generation in optical fibers,” J. Chem. Phys. 69(10), 4349–4356 (1978).
    [CrossRef]
  15. Y.-P. Huang, et al., arXiv: 1008, 2408 [quant.ph] Aug. 14 (2010).
  16. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
    [CrossRef]
  17. D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
    [CrossRef]
  18. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  19. K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
    [CrossRef]
  20. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
    [CrossRef]
  21. J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
    [CrossRef]
  22. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).
    [CrossRef]
  23. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20(1), 31–33 (1995).
    [CrossRef] [PubMed]
  24. D. Mahgerefteh, D. L. Butler, J. Goldhar, B. Rosenberg, and G. L. Burdge, “Technique for measurement of the Raman gain coefficient in optical fibers,” Opt. Lett. 21(24), 2026–2028 (1996).
    [CrossRef] [PubMed]
  25. S. Smolorz, F. Wise, and N. F. Borrelli, “Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling,” Opt. Lett. 24(16), 1103–1105 (1999).
    [CrossRef]
  26. J. F. Scott, “Raman spectra of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
    [CrossRef]
  27. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13(10), 2170–2177 (1996).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  29. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [CrossRef]

2010 (4)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

2009 (2)

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
[CrossRef]

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79(6), 063830 (2009).
[CrossRef]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2002 (2)

Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
[CrossRef]

J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
[CrossRef]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

S. Smolorz, F. Wise, and N. F. Borrelli, “Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling,” Opt. Lett. 24(16), 1103–1105 (1999).
[CrossRef]

1996 (2)

1995 (1)

1990 (1)

G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22(2), 95–122 (1990).
[CrossRef]

1989 (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).
[CrossRef]

1988 (1)

1982 (1)

S. M. Jensen, “The non-linear coherent coupler,” IEEE J. Quantum Electron. 18(10), 1580–1583 (1982).
[CrossRef]

1978 (2)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

J. Stone, “Inverse Raman-scattering - continuous generation in optical fibers,” J. Chem. Phys. 69(10), 4349–4356 (1978).
[CrossRef]

1970 (1)

J. F. Scott, “Raman spectra of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
[CrossRef]

1964 (1)

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra - induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[CrossRef]

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[CrossRef]

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

An, Q. R.

Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

Borrelli, N. F.

Bromage, J.

J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
[CrossRef]

Burdge, G. L.

Butler, D. L.

Dougherty, D. J.

Feldtmann, T.

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

Franson, J. D.

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79(6), 063830 (2009).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Friberg, S. R.

Galeener, F. L.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

Geils, R. H.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

Gilch, P.

Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
[CrossRef]

Goldhar, J.

Gordon, J. P.

Haus, H. A.

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Headley, C.

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Ippen, E. P.

Jacobs, B. C.

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79(6), 063830 (2009).
[CrossRef]

Jalali, B.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
[CrossRef]

Jensen, S. M.

S. M. Jensen, “The non-linear coherent coupler,” IEEE J. Quantum Electron. 18(10), 1580–1583 (1982).
[CrossRef]

Jones, J.

K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

Jones, W. J.

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra - induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kärtner, F. X.

Kieu, K.

K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
[CrossRef] [PubMed]

Kira, M.

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

Koch, S. W.

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

Koonath, P.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
[CrossRef]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Lines, M. E.

J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mahgerefteh, D.

Mansuripur, M.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Mikkelsen, J. C.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Mosby, W. J.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

Norwood, R. A.

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Peyghambarian, N.

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[CrossRef]

Rosenberg, B.

Rottwitt, K.

J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
[CrossRef]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Schneebeli, L.

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

Scott, J. F.

J. F. Scott, “Raman spectra of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
[CrossRef]

Sfez, B. G.

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Silberberg, Y.

Smith, P. S.

Smolorz, S.

Solli, D. R.

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22(2), 95–122 (1990).
[CrossRef]

Stoicheff, B. P.

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra - induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[CrossRef]

Stolen, R. H.

Stone, J.

J. Stone, “Inverse Raman-scattering - continuous generation in optical fibers,” J. Chem. Phys. 69(10), 4349–4356 (1978).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Tomlinson, W. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Weiner, A. M.

Wise, F.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

Wright, E. M.

G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22(2), 95–122 (1990).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Zinth, W.

Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross-sections of vitreous SiO2, GeO2, B2O3 and P2O5.,” Appl. Phys. Lett. 32(1), 34–36 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

S. M. Jensen, “The non-linear coherent coupler,” IEEE J. Quantum Electron. 18(10), 1580–1583 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Kieu, J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010).
[CrossRef]

J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,” IEEE Photon. Technol. Lett. 14(1), 24–26 (2002).
[CrossRef]

J. Chem. Phys. (1)

J. Stone, “Inverse Raman-scattering - continuous generation in optical fibers,” J. Chem. Phys. 69(10), 4349–4356 (1978).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Nature (2)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

Q. R. An, W. Zinth, and P. Gilch, “In situ determination of fluorescence lifetimes via inverse Raman scattering,” Opt. Commun. 202(1-3), 209–216 (2002).
[CrossRef]

Opt. Lett. (5)

Opt. Photon. News (1)

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Zeno Switching Through Inverse Raman Scattering in Optical Fiber,” Opt. Photon. News 21(12), 35 (2010).
[CrossRef]

Opt. Quantum Electron. (1)

G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22(2), 95–122 (1990).
[CrossRef]

Phys. Rev. A (3)

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79(6), 063830 (2009).
[CrossRef]

L. Schneebeli, T. Feldtmann, M. Kira, S. W. Koch, and N. Peyghambarian, “Zeno-logic applications of semiconductor quantum dots,” Phys. Rev. A 81(5), 053852 (2010).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, “Inverse Raman scattering in silicon: a free-carrier enhanced effect,” Phys. Rev. A 79(5), 053853 (2009).
[CrossRef]

Phys. Rev. B (1)

J. F. Scott, “Raman spectra of GeO2,” Phys. Rev. B 1(8), 3488–3493 (1970).
[CrossRef]

Phys. Rev. Lett. (2)

W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra - induced absorption at optical frequencies,” Phys. Rev. Lett. 13(22), 657–659 (1964).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other (2)

Y.-P. Huang, et al., arXiv: 1008, 2408 [quant.ph] Aug. 14 (2010).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. ML laser: mode-locked fiber laser with carbon nanotube saturable absorber. PC: polarization controller. WDM: Wavelength Division Multiplexer. FUT: Fiber Under Test. OSA: Optical Spectrum Analyzer.

Fig. 2
Fig. 2

Measured (a) and calculated (b) IRS spectra in small core germanium-doped optical fiber (Nufern, UHNA7). The pump and signal beams are combined using a standard 1480/1550 wavelength division multiplexer (WDM). The pump has a narrow linewidth with a center wavelength around 1560 nm and the signal beam is a broadband supercontinuum. The black vertical line shows the cutoff wavelength of the WDM, which is around 1510 nm. When the pump power is increased the spectral components of the signal beam that coincide with the Raman vibration frequencies of the material exhibit significant loss. This appears as a dip in the optical spectrum of the anti-Stokes signal beam.

Fig. 3
Fig. 3

Oscilloscope screen captures showing the pump (blue) and signal (yellow) pulse trains. (a) The separation between the pump and signal pulses is ~5 ps; no interaction is observed. (b) The pump and signal pulses are overlapped in time; the signal pulses are switched off almost completely due to IRS in the germanium-doped optical fiber. (c) The pump and signal pulses are overlapped in time, the average power of the pump pulses are modulated by modulating the driving current of the corresponding EDFA amplifier; the modulation is clearly transferred to the signal pulse train.

Fig. 4
Fig. 4

Raman response spectrum of UHNA7 (a) and SMF 28 (b). These curves were obtained by subtracting the initial spectrum of the signal beam at negligible pump powers from the measured optical spectra of the signal beam at different pump powers.

Fig. 5
Fig. 5

Numerical and experimental results for (a) Stimulated Raman loss (SRL) vs. peak pump power and (b) SRL vs. length of the fiber under test (the average power of the pump is fixed at 50 mW). SRL is defined as the maximal loss experienced by the signal beam

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A a s z =   i β 2 , a s 2 2 A a s t 2   α a s 2 A a s + i γ a s [ | A a s | 2 +   ( 2 f R ) | A p | 2 ] A a s +   i γ a s f R ×   A p t h R ( t t ' ) A a s ( z , t ' ) A p * ( z , t ' ) e i Ω R ( t t ' ) d t ' ,
A p z =   d w o A p t i β 2 , p 2 2 A p t 2   α p 2 A p +   i γ p [ | A p | 2 +   ( 2 f R ) | A a s | 2 ] A p +   i γ p f R ×   A a s t h R ( t t ' ) A p ( z , t ' ) A a s * ( z , t ' ) e i Ω R ( t t ' ) d t ' .
h R ( t ) =   τ 1 2 + τ 2 2 τ 1 τ 2 2 e t τ 2  sin ( t τ 1 ) ,  

Metrics