Abstract

In order to obtain broadband near-field infrared (IR) spectra, a Fourier-transform IR spectrometer (FT-IR) and a ceramic light source were used with a scattering-type scanning near-field optical microscope (s-SNOM). To suppress the background (far-field) scattering, the distance between the scattering probe and the sample was modulated with frequency Ω by a piezo-electric actuator, and the Ω component was extracted from the signal with a lock-in detection. With Ω=30 kHz, a peak-to-peak modulation amplitude of 198 nm, and a probe with smooth surface near the tip, broadband near-field IR spectra could be obtained in the 1200-2500 cm−1.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hollas, Modern Spectroscopy, 3rd ed. (John Wiley and Sons, Chichester, 1996).
  2. M. Ohtsu, (Ed.), Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, 1998).
  3. S. Kawata, (Ed.), Near-Field Optics and Surface Plasmon Polaritons (Springer-Verlag, Berlin, 2001).
  4. S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-24-21794 .
    [CrossRef] [PubMed]
  5. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [CrossRef] [PubMed]
  7. H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-5-3430 .
    [CrossRef] [PubMed]
  8. M. Brehm, A. Schliesser, F. Cajko, I. Tsukerman, and F. Keilmann, “Antenna-mediated back-scattering efficiency in infrared near-field microscopy,” Opt. Express 16(15), 11203–11215 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11203 .
    [CrossRef] [PubMed]
  9. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  10. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
    [CrossRef]
  11. Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
    [CrossRef]
  12. Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
    [CrossRef]
  13. N. Kuya, S. Nakashima, S. Okumura, M. Nakauchi, S. Kimura, and Y. Narita, “Near-field infrared microspectroscopy on the distribution of water and organics in submicron area,” in Physicochemistry of Water in Geological and Biological Systems E.D. S. Nakashima ed. (Universal Academy Press, Inc., Tokyo, 2004)
  14. S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
    [CrossRef]
  15. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
    [CrossRef] [PubMed]
  16. Jan Fostier, “Open FMM” http://openfmm.sourceforge.net/index.php?id=0 .
  17. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [CrossRef]

2011 (2)

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

2010 (1)

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

2009 (1)

2008 (2)

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

2000 (2)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

1996 (1)

S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[CrossRef] [PubMed]

Aizawa, K.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Amarie, S.

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[CrossRef] [PubMed]

Brehm, M.

Cajko, F.

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Drachenko, O.

Ganz, T.

Helm, M.

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

Ikemoto, Y.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Inoue, T.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Ishikawa, M.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Katsura, M.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Kebukawa, Y.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Keilmann, F.

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Kinoshita, T.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Mononobe, S.

S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

Moriwaki, T.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Nakamura-Messenger, K.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Nakashima, S.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Ohtsu, M.

S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

Okamura, H.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Schliesser, A.

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[CrossRef] [PubMed]

Tsukerman, I.

van der Weide, D. W.

von Ribbeck, H. G.

Winnerl, S.

Zolensky, M. E.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

e-J. Surf. Sci. Nanotech. (1)

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotech. 9, 63–66 (2011).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

J. Lightwave Technol. (1)

S. Mononobe and M. Ohtsu, “Fabrication of a Pencil-Shaped Fiber Probe for Near-Field Optics by Selective Chemical Etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

Meteorit. Planet. Sci. (1)

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Opt. Commun. (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4–6), 321–328 (2000).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

Science (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[CrossRef] [PubMed]

Surf. Sci. Nanotech. (1)

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a Modulating Technique to Detect Near-Field Signals Using a Conventional IR Spectrometer with a Ceramic Light Source,” Surf. Sci. Nanotech. 9, 40–45 (2011).
[CrossRef]

Other (5)

N. Kuya, S. Nakashima, S. Okumura, M. Nakauchi, S. Kimura, and Y. Narita, “Near-field infrared microspectroscopy on the distribution of water and organics in submicron area,” in Physicochemistry of Water in Geological and Biological Systems E.D. S. Nakashima ed. (Universal Academy Press, Inc., Tokyo, 2004)

J. M. Hollas, Modern Spectroscopy, 3rd ed. (John Wiley and Sons, Chichester, 1996).

M. Ohtsu, (Ed.), Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, 1998).

S. Kawata, (Ed.), Near-Field Optics and Surface Plasmon Polaritons (Springer-Verlag, Berlin, 2001).

Jan Fostier, “Open FMM” http://openfmm.sourceforge.net/index.php?id=0 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic diagram of the experimental set-up used for the present broad-band near-field IR studies. A piezoelectric actuator placed beneath the probe tip is oscillated with a frequency of Ω (6 or 30 kHz) and the Ω or 2Ω frequency component is extracted from the MCT detector output using a lock-in amplifier.

Fig. 2
Fig. 2

Scanning electron microscopic images of the two types of probes used in this study. In (a), the red arrow indicates the “step”, discussed in the text. The step was removed for Type B probe.

Fig. 3
Fig. 3

Integral signal intensity as a function of sample-probe distance recorded with Types A and B probes and modulation frequencies of 1Ω and 2Ω. The 1Ω component for the type B probe showed strong localization.

Fig. 4
Fig. 4

(a) Laser scanning confocal microscopic image of the standard sample used in this work, which was fabricated by electron beam lithography. A straight border line can be seen at the center of the picture between an organic film covering on the Au mirror (left) and the Au mirror (right). (b) Topographic image showing the border line between the organic film area (0 µm ≤ X ≤ 4 µm) and Au area (4 µm ≤ X ≤ 8 µm). The height of the organic film is approximately 300 nm. (c) IR integral intensity image of the same area as in (b). A sharp jump of IR intensity is observed within hundreds of nanometers at the border line. The data in (b) and (c) were measured simultaneously, while keeping a constant tip-sample distance via the shear-force feedback

Fig. 5
Fig. 5

(a) Integral IR intensity measured as a function of the distance between the probe tip and the Au mirror. The peak-to-peak modulation amplitudes are 33 (purple curve), 66 (blue), 132 (red), 198 (black) nm. (b) Parameters A (black dots), B (red dots) and (c) C, obtained from the fitting of the data in (a) using Eq. (1), plotted as a function of the oscillation amplitude. The broken lines are guide to the eye.

Fig. 6
Fig. 6

1Ω spectra measured with the type A probe (c: green) and the type B probe (b: blue) together with the reference IR spectrum (a: red) obtained without using actuator and lock-in amplifier.

Fig. 7
Fig. 7

Modulated IR spectra with the type B probe with increasing probe - Au mirror distance from closest (a: blue) to 100 nm (b: green) and 200 nm (c: red).

Fig. 8
Fig. 8

Estimated near-field contribution in the 1Ω spectrum, given by the spectrum measured at z=0 nm [Fig. 7(a)] minus that at z=200 nm [Fig. 7(c)], normalized by the reference spectrum [Fig. 6(a)].

Fig. 9
Fig. 9

Results of numerical calculations for the spatial and spectral distributions of near-field electric field around a metal probe tip. (a) The distribution of relative electromagnetic field (|E|/|E0|) in the XZ plane. The tip radius is 250 nm with an incident IR radiation of 11 µm wavelength. (b) Profile of |E|/|E0| as a function of distance from the probe tip for various probe tip radii (color: tip radius) = (black: 250 nm), (red: 500 nm) and (blue: 1000 nm). (c) The relative electromagnetic field at a distance of 50 nm from the probe tip as a function of wave number. The probe tip radii are 250, 500 and 1000 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( z ) = A + B e z / C .

Metrics