Abstract

A low cost fiber-optic micro-cavity interferometric sensor is presented. The micro-cavity is fabricated at the fiber tip by splicing a silica capillary to a single mode fiber and then heating/melting the capillary to form a microsphere with an internal air cavity. Applications of the micro-cavity sensor for temperature and traverse load measurements are demonstrated. The sensor has small size and good mechanical strength, and may be used in high temperature environment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  2. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
    [CrossRef]
  3. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  4. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
    [CrossRef] [PubMed]
  5. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-line Fabry-Perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
    [CrossRef]
  6. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  7. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  8. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [CrossRef] [PubMed]
  9. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
    [CrossRef]
  10. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
    [CrossRef]
  11. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
    [CrossRef]
  12. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
    [CrossRef]
  13. M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, “Differential birefringence in Bragg gratings in multicore fiber under transverse stress,” Opt. Lett. 29(19), 2225–2227 (2004).
    [CrossRef] [PubMed]
  14. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
    [CrossRef] [PubMed]
  15. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
    [CrossRef]
  16. Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
    [CrossRef]
  17. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [CrossRef]

2009 (3)

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-line Fabry-Perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (3)

2005 (2)

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

2004 (1)

2002 (1)

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
[CrossRef]

2000 (1)

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
[CrossRef]

1999 (1)

1996 (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

1993 (1)

Avdeev, I. V.

Bails, M. M.

Bartelt, H.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Barton, J. S.

Becker, M.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Bennion, I.

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, “Differential birefringence in Bragg gratings in multicore fiber under transverse stress,” Opt. Lett. 29(19), 2225–2227 (2004).
[CrossRef] [PubMed]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
[CrossRef]

Berghmans, F.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Berkoff, T. A.

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
[CrossRef]

Brennan, D. D.

Canning, J.

Chah, K.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Chen, K. P.

Cheng, G. H.

Choi, E. S.

Choi, H. Y.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Cooper, K. L.

Coviello, G.

De Waele, W.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Degrieck, J.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Deng, M.

Duan, D. W.

Finazzi, V.

Friebele, E. J.

Geernaert, T.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Han, Y.

Jewart, C.

Jones, J. D.

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Kersey, A. D.

LeBlanc, M.

Lee, B. H.

Levitan, S. P.

Li, C.

Li, H.

Li, Y.

Liu, Y.

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
[CrossRef]

Luyckx, G.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

MacPherson, W. N.

McMillen, B.

Moore, A. J.

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Nasilowski, T.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Paek, U. C.

Park, K. S.

Park, S. J.

Pickrell, G. R.

Pruneri, V.

Putman, M. A.

Rao, Y. J.

Silva-Lopez, M.

Sirkis, J. S.

Terryn, H.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Thienpont, H.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Tsai, H.-L.

Tsai, T. E.

Urbanczyk, W.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Villatoro, J.

Voet, E.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Vohra, S. T.

Vyatchanin, S. P.

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
[CrossRef]

Wang, A.

Wang, X.

Wei, T.

Wojcik, J.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

Xiao, H.

Xu, J.

Yang, X. C.

Zhang, L.

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, “Differential birefringence in Bragg gratings in multicore fiber under transverse stress,” Opt. Lett. 29(19), 2225–2227 (2004).
[CrossRef] [PubMed]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
[CrossRef]

Zhao, D.

Zhu, T.

Zhu, Y.

Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
[CrossRef]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Electron. Lett. (1)

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35(8), 661–663 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (7)

J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
[CrossRef] [PubMed]

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
[CrossRef]

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, “Differential birefringence in Bragg gratings in multicore fiber under transverse stress,” Opt. Lett. 29(19), 2225–2227 (2004).
[CrossRef] [PubMed]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
[CrossRef] [PubMed]

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae,” Phys. Lett. A 271(5-6), 303–307 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fabrication of the micro-cavity. (a) Splice a silica capillary to a SMF; (b) heat and melt the capillary to form an air cavity (L: distance from electrode to the SMF end); (c) a sketch showing the fiber-tip micro-cavity; microscope image of (d) capillary cross-section and (e) micro-cavity.

Fig. 2
Fig. 2

Reflection spectrum of the micro-cavity shown in Fig. 1(e). The fiber-tip is placed (a) in air and (b) in a liquid with refractive index of 1.4. The spectrums were normalized by the source spectrum.

Fig. 3
Fig. 3

(a) Setup for measuring the reflection spectrum of the micro-cavity sensor; (b) spectrum of the BBS; (c) setup for transverse load test.

Fig. 4
Fig. 4

(a) Dependence of air-cavity length on offset distance L; (b) relationship between fringe wavelength spacing and air-cavity length.

Fig. 5
Fig. 5

Micro-cavities fabricated with different offset distances L. (a) 300 µm; (b) 400µm; (c) 700µm.

Fig. 6
Fig. 6

(a) Shift of reflection spectrum with temperature; (b) dip wavelengths as functions of temperature. The cavity length d* and the silica wall thickness t are respectively 63 µm and 44 µm.

Fig. 7
Fig. 7

(a) Spectrum of micro-cavity sensors fabricated with different offset distances L. The spectrums are offset vertically for the purpose of easy observation. The actual spectrums are all around the level of - 30 dB; (b) Dip wavelengths as function of temperature for cavities made with different offset distances L.

Fig. 8
Fig. 8

Reflection spectrum of a fiber-tip micro-cavity. The fiber-tip is (a) without blackening process and (b) after blackening process. No transverse load is applied.

Fig. 9
Fig. 9

(a) Transverse load sensitivity of the micro-cavity sensor in the range of 0 - 5 N; insert: reflection spectrum for different transverse loads; (b) temperature sensitivity of the micro-cavity sensor.

Tables (1)

Tables Icon

Table 1 Temperature characteristics of micro-cavity sensors fabricated by different offset distances

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ = ( Δ L L + Δ n n ) = ε + κ
I | E | 2 = | E 1 E 2 exp ( 4 π λ n a i r d * ) + E 3 exp [ 4 π λ ( n s i l i c a t + n a i r d * ) ] | 2                                                                                         = E 1 2 + E 2 2 + E 3 2 2 E 1 E 2 cos ( 4 π λ n a i r d * ) 2 E 2 E 3 cos ( 4 π λ n s i l i c a t )                                                                                                           + 2 E 1 E 3 cos [ 4 π λ ( n s i l i c a t + n a i r d * ) ]

Metrics