Abstract

A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  4. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  5. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  6. J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).
  7. W.-S. Chang and C.-Y. Chang, “Novel Micostrip Periodic Structure and Its Application to Microwave Filter Design,” IEEE Microw. Wirel. Compon. Lett. 21(3), 124–126 (2011).
    [CrossRef]
  8. A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
    [CrossRef]
  9. V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter,” Accepted in IEEE Trans. Microwave Theory Tech. (to be published).
  10. W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
    [CrossRef]
  11. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Optics 43, 497–530 (2002).
    [CrossRef]
  12. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  13. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
    [CrossRef]
  14. W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [CrossRef] [PubMed]
  15. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  16. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [CrossRef] [PubMed]
  17. T. Baba, “Slow Light in Photonic Crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  18. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
    [CrossRef] [PubMed]
  19. D. B. Adams and C. K. Madsen, “A novel Broadband Photonic Phase Shifter,” J. Lightwave Technol. 26(15), 201–229 (2008).
    [CrossRef]
  20. M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
    [CrossRef]
  21. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
    [CrossRef] [PubMed]
  22. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
    [CrossRef]
  23. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
    [CrossRef]
  24. M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
    [CrossRef] [PubMed]
  25. F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66(1), 51–83 (1978).
    [CrossRef]

2011 (4)

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

W.-S. Chang and C.-Y. Chang, “Novel Micostrip Periodic Structure and Its Application to Microwave Filter Design,” IEEE Microw. Wirel. Compon. Lett. 21(3), 124–126 (2011).
[CrossRef]

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
[CrossRef]

2010 (6)

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

2009 (3)

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

2008 (5)

D. B. Adams and C. K. Madsen, “A novel Broadband Photonic Phase Shifter,” J. Lightwave Technol. 26(15), 201–229 (2008).
[CrossRef]

T. Baba, “Slow Light in Photonic Crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (2)

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Optics 43, 497–530 (2002).
[CrossRef]

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

1978 (1)

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Adams, D. B.

D. B. Adams and C. K. Madsen, “A novel Broadband Photonic Phase Shifter,” J. Lightwave Technol. 26(15), 201–229 (2008).
[CrossRef]

Armendariz, M.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter,” Accepted in IEEE Trans. Microwave Theory Tech. (to be published).

Aznar, F.

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

Baba, T.

T. Baba, “Slow Light in Photonic Crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Berger, P.

Bonache, J.

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

Bourderionnet, J.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Optics 43, 497–530 (2002).
[CrossRef]

Capmany, J.

W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Chang, C.-Y.

W.-S. Chang and C.-Y. Chang, “Novel Micostrip Periodic Structure and Its Application to Microwave Filter Design,” IEEE Microw. Wirel. Compon. Lett. 21(3), 124–126 (2011).
[CrossRef]

Chang, W.-S.

W.-S. Chang and C.-Y. Chang, “Novel Micostrip Periodic Structure and Its Application to Microwave Filter Design,” IEEE Microw. Wirel. Compon. Lett. 21(3), 124–126 (2011).
[CrossRef]

Chin, S.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Combrié, S.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Cui, W.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

De Rossi, A.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Ding, Y.

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

Dolfi, D.

Durán-Sindreu, M.

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

Entesari, K.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter,” Accepted in IEEE Trans. Microwave Theory Tech. (to be published).

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

García Olcina, R.

Gasulla, I.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Optics 43, 497–530 (2002).
[CrossRef]

Hagedorn-Fradsen, L.

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

Harris, F. J.

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Huangfu, J.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

Hughes, S.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Hvam, J. M.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Li, C.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

Liu, L.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

Lloret, J.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Loayssa, A.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

Long, J.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

Madsen, C. K.

D. B. Adams and C. K. Madsen, “A novel Broadband Photonic Phase Shifter,” J. Lightwave Technol. 26(15), 201–229 (2008).
[CrossRef]

Martín, F.

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

Mork, J.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Ou, H.

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

Pastor, D.

Patterson, M.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Pu, M.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

Ran, L.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

Sagues, M.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

Sales, S.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Sancho, J.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Seeds, A.

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

Sekar, V.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter,” Accepted in IEEE Trans. Microwave Theory Tech. (to be published).

Shen, W.

W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
[CrossRef]

Sun, X.-W.

W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
[CrossRef]

Thévenaz, L.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Tran, N. V.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Vélez, A.

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

Xue, W.

W. Xue, S. Sales, J. Capmany, and J. Mork, “Wideband 360° microwave photonic phase shifter based on slow and fast light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

Yao, J.

Yin, W.-Y.

W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
[CrossRef]

Yvind, K.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[CrossRef] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

IEE Proc. Microwaves, Antennas Propag. (1)

A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martín, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEE Proc. Microwaves, Antennas Propag. 5(3), 277–281 (2011).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (3)

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 21(2), 74–76 (2011).

W.-S. Chang and C.-Y. Chang, “Novel Micostrip Periodic Structure and Its Application to Microwave Filter Design,” IEEE Microw. Wirel. Compon. Lett. 21(3), 124–126 (2011).
[CrossRef]

W. Shen, W.-Y. Yin, and X.-W. Sun, “Compact Substrate Integrated Waveguide (SIW) Filter with Defect Groud Structure,” IEEE Microw. Wirel. Compon. Lett. 21(2), 83–85 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter,” Accepted in IEEE Trans. Microwave Theory Tech. (to be published).

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (4)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

T. Baba, “Slow Light in Photonic Crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Opt. Express (4)

Photon. Technol. Lett. (3)

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers,” Photon. Technol. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, L. Hagedorn-Fradsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter based on Silicon-on-Insulator Microring Resonator,” Photon. Technol. Lett. 22(12), 869–871 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[CrossRef] [PubMed]

Proc. IEEE (1)

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Prog. Optics (1)

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Optics 43, 497–530 (2002).
[CrossRef]

Trans. Microwave Theory and Tech J. Lightwave Technol. (1)

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to Microwave Photonics using Semiconductor Optical Amplifiers,” Trans. Microwave Theory and Tech J. Lightwave Technol. 58(11), 3022–3038 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup. (b) MRR magnitude and phase transfer functions.

Fig. 2
Fig. 2

Samples spectral placement on the MRR phase response for (a) minimum and (b) maximum filter tunability when N = 4.

Fig. 3
Fig. 3

Frequency response of the (a) two-tap, (b) three-tap and (c) four-tap complex-valued filter.

Fig. 4
Fig. 4

Filter response as a function of the window.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( f ) = r = 0 N 1 a r e j 2 π f r T = r = 0 N 1 | a r | e j r φ e j 2 π f r T ,

Metrics