Abstract

Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 1015 W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), Chap. 2.
  2. Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
    [CrossRef] [PubMed]
  3. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [CrossRef] [PubMed]
  4. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [PubMed]
  5. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamosauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
    [CrossRef]
  6. http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/602091/1033/content.aspx
  7. P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998), Chap. 2.
  8. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004).
    [CrossRef]
  9. C. Schaffer, Ph.D. thesis, “Interaction of femtosecond laser pulses with transparent materials,” Harvard University (2001).
  10. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [CrossRef]
  11. I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, 2002), Chap. 5.
  12. See, for example, P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), p. 174.
  13. Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
    [CrossRef] [PubMed]
  14. V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
    [CrossRef]
  15. The measured transmitted light includes residual 800 nm light and contributions from incident light that was spectrally blue-shifted.
  16. C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
    [CrossRef]
  17. W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
    [CrossRef]
  18. H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
    [CrossRef]
  19. R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
    [CrossRef] [PubMed]
  20. H. Gumu, “Simple stopping power formula for low and intermediate energy electrons,” Radiat. Phys. Chem. 72(1), 7–12 (2005).
    [CrossRef]

2008 (1)

2007 (2)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

2006 (2)

V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
[CrossRef]

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

2005 (1)

H. Gumu, “Simple stopping power formula for low and intermediate energy electrons,” Radiat. Phys. Chem. 72(1), 7–12 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

2002 (2)

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

C. Schaffer, N. Nishimura, E. Glezer, A. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

2000 (1)

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Bradforth, S. E.

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

Couairon, A.

Crowell, R. A.

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

Date, H.

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

del Coso, R.

Di Trapani, P.

Dubietis, A.

Elles, C.

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

Fehr, R.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Forster, E.

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

Gericke, D.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Gibbon, P.

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

Glezer, E.

Gopal, A.

Gumu, H.

H. Gumu, “Simple stopping power formula for low and intermediate energy electrons,” Radiat. Phys. Chem. 72(1), 7–12 (2005).
[CrossRef]

Hasegawa, H.

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

Haßner, R.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Ishikawa, K.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Jailaubekov, A. E.

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

Kim, A.

Kingham, R.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Kraeft, W.-D.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Li, Y. J.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Li, Y. T.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Liang, T. J.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Lu, X.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Mazur, E.

McDonald, J. C.

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

Minardi, S.

Mirzaie, M.

V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
[CrossRef]

Nishimura, N.

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

Peng, X. Y.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Piskarskas, R.

Reich, Ch.

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

Sauerbrey, R.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Sazegari, V.

V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
[CrossRef]

Schaffer, C.

Schlanges, M.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Sheng, Z. M.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Shimozuma, M.

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

Shokri, B.

V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
[CrossRef]

Solis, J.

Stewart, R. D.

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

Strom, D. J.

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

Sutherland, K. L.

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

Tamosauskas, G.

Tang, X. W.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Tatarakis, M.

Teng, H.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Theobald, W.

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Uschmann, I.

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wilson, W. E.

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhang, J.

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[CrossRef]

J. Chem. Phys. (1)

C. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125, 044515 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. B (1)

H. Date, K. L. Sutherland, H. Hasegawa, and M. Shimozuma, “Ionization and excitation collision processes of electrons in liquid water,” Nucl. Instrum. Methods Phys. Res. B 265(2), 515–520 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. D. Stewart, W. E. Wilson, J. C. McDonald, and D. J. Strom, “Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system,” Phys. Med. Biol. 47(1), 79–88 (2002).
[CrossRef] [PubMed]

Phys. Plasmas (1)

V. Sazegari, M. Mirzaie, and B. Shokri, “Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with tenuous plasma,” Phys. Plasmas 13, 033102 (2006).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

W. Theobald, R. Haßner, R. Kingham, R. Sauerbrey, R. Fehr, D. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, “Electron densities temperatures and the dielectric function of femtosecond-laser-produced plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3544–3553 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

Y. T. Li, J. Zhang, Z. M. Sheng, H. Teng, T. J. Liang, X. Y. Peng, X. Lu, Y. J. Li, and X. W. Tang, “Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses,” Phys. Rev. Lett. 90(16), 165002 (2003).
[CrossRef] [PubMed]

Ch. Reich, P. Gibbon, I. Uschmann, and E. Forster, “Yield optimization and time structure of femtosecond laser plasma kalpha sources,” Phys. Rev. Lett. 84(21), 4846–4849 (2000).
[CrossRef] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Radiat. Phys. Chem. (1)

H. Gumu, “Simple stopping power formula for low and intermediate energy electrons,” Radiat. Phys. Chem. 72(1), 7–12 (2005).
[CrossRef]

Other (7)

P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), Chap. 2.

http://www.newport.com/The-Effect-of-Dispersion-on-Ultrashort-Pulses/602091/1033/content.aspx

P. W. Barber, and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998), Chap. 2.

C. Schaffer, Ph.D. thesis, “Interaction of femtosecond laser pulses with transparent materials,” Harvard University (2001).

I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, 2002), Chap. 5.

See, for example, P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2007), p. 174.

The measured transmitted light includes residual 800 nm light and contributions from incident light that was spectrally blue-shifted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission images of single-pulse events; pump beam propagates left to right; dashed lines indicate spatial location of Gaussian pump-beam halfwidths. a) Wide view, indicating plasma-formation region in center third of column and unperturbed water above and below. b) Close-up of ionized region at t = 0 fs just as excitation pulse passes center of column. c) Close-up of ionized region 700 fs after arrival of excitation pulse in center of column. Red arrows in b) and c) indicate h(t) – spatial extent of ionized region along centerline of water column.

Fig. 2
Fig. 2

Relative transmission of 400-nm light along centerline of transmission images for 210-µJ excitation at four time delays. Red arrow indicates h(t = 267 fs).

Fig. 3
Fig. 3

Net displacement from incident-beam axis of ionized region as function of delay from arrival of excitation pulse for each of five incident pulse energies.

Tables (1)

Tables Icon

Table 1 Summary of Plasma Conditions: ne (Total Electron Density), Te (Avg. Electron Temperature), Ratio of Hot to Cold Electron Density, Ratio of Calculated Transmission to Measured Transmission at 400 nm, and Ratio of Total Post-pulse Energy to Pulse Energy of Incident Light

Metrics