Abstract

We present a Bessel beam illumination FDOCT setup using a FDML Swept Source at 1300nm with up to 440kHz A-scan rate, and discuss its advantages for structural and functional imaging of highly scattering samples. An extended focus is achieved due to the Bessel beam that preserves its lateral extend over a large depth range. Furthermore, Bessel beams exhibit a self-reconstruction property that allows imaging even behind obstacles such as hairs on skin. Decoupling the illumination from the Gaussian detection increases the global sensitivity and enables dark field imaging. Dark field imaging is useful to avoid strong reflexes from the sample surface that adversely affect the sensitivity due to the limited dynamic range of high speed 8bit acquisition cards. In addition the possibility of contrasting capillaries with high sensitivity is shown, using inter-B-scan speckle variance analysis. We demonstrate intrinsic advantages of the extended focus configuration, in particular the reduction of the phase decorrelation effect below vessels leading to improved axial vessel definition.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography - Technology and Applications (Springer, 2008).
  2. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
    [CrossRef]
  3. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23(3), 147–149 (1998).
    [CrossRef]
  4. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  7. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  8. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  10. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  11. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
    [CrossRef] [PubMed]
  12. Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
    [CrossRef]
  13. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
    [CrossRef] [PubMed]
  14. L. F. Yu, B. Rao, J. Zhang, J. P. Su, Q. Wang, S. G. Guo, and Z. P. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [CrossRef] [PubMed]
  15. V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29(15), 1754–1756 (2004).
    [CrossRef] [PubMed]
  16. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).
  17. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [CrossRef]
  18. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  19. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932 (1991).
    [CrossRef]
  20. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  21. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
    [CrossRef] [PubMed]
  22. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  23. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef]
  24. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
    [CrossRef] [PubMed]
  25. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  26. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
    [CrossRef]
  27. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
    [CrossRef] [PubMed]
  28. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  29. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  30. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  31. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
    [CrossRef] [PubMed]
  32. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  33. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  34. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  35. A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
    [CrossRef] [PubMed]
  36. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  37. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
    [CrossRef] [PubMed]
  38. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  39. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [CrossRef]
  40. B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
    [CrossRef] [PubMed]
  41. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2006

2005

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

2004

2003

2002

Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

1998

1997

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[CrossRef]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

1991

Adler, D. C.

Aguirre, A. D.

Alex, A.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

An, L.

Aoki, G.

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Barr, H.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Baumann, B.

Bazant-Hegemark, F.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

Berisha, F.

Biedermann, B. R.

Binder, S.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Cable, A.

Cable, A. E.

Cense, B.

Chen, T. C.

Chen, Z. P.

Choma, M.

Davis, A. M.

de Boer, J.

de Boer, J. F.

Ding, Z. H.

Dobre, G. M.

Drexler, W.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Endo, T.

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[CrossRef]

Fercher, A.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fingler, J.

Fraser, S. E.

Freilich, M. I.

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Glittenberg, C.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Goldberg, B. D.

Gorczynska, I.

Gordon, M. L.

Götzinger, E.

Grulkowski, I.

Guo, S. G.

Hattersley, S.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

Herman, R. M.

Hitzenberger, C.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Hitzenberger, C. K.

Hofer, B.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Holmes, J.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

Hong, Y.

Huang, S. W.

Huber, R.

Huber, R. A.

Itoh, M.

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Izatt, J.

Izatt, J. A.

Jackson, D. A.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Jiang, J.

Jiang, J. Y.

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Khurana, M.

Klein, T.

Kolbitsch, C.

Kowalczyk, A.

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Lasser, T.

Lee, K. S.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[CrossRef]

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leung, M. K.

Lo, S.

Makita, S.

Marcon, N. E.

Mariampillai, A.

Marks, D. L.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Moriyama, E. H.

Munce, N.

Munce, N. R.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Nakamura, Y.

Nassif, N.

Nelson, J. S.

Oh, W. Y.

Pache, C.

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B. H.

Pekar, J.

Pierce, M. C.

Pircher, M.

Podoleanu, A. G.

Popov, S.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Považay, B.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

Qin, J.

Ralston, T. S.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Rao, B.

Ren, H. W.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[CrossRef]

Rolland, J. P.

Sando, Y.

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Sarunic, M.

Sattmann, H.

Schmetterer, L.

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[CrossRef]

Schmoll, T.

Schwartz, D.

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[CrossRef]

Standish, B. A.

Steinmann, L.

Sticker, M.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Stone, N.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Su, J. P.

Sugisaka, J. I.

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Suter, M. J.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
[CrossRef] [PubMed]

Villiger, M.

Vitkin, I. A.

Wang, Q.

Wang, R. K.

Waxman, S.

Wieser, W.

Wiggins, T. A.

Wilson, B. C.

Wojtkowski, M.

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Yamanari, M.

Yang, C.

Yang, V. X.

Yasuno, Y.

Yatagai, T.

Yu, L. F.

Yun, S.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[CrossRef]

Zhang, J.

Zhao, Y. H.

IEEE Trans. Image Process.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Nat. Photonics

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[CrossRef]

Opt. Commun.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

L. F. Yu, B. Rao, J. Zhang, J. P. Su, Q. Wang, S. G. Guo, and Z. P. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[CrossRef] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

Opt. Lett.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
[CrossRef] [PubMed]

V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29(15), 1754–1756 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
[CrossRef] [PubMed]

A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23(3), 147–149 (1998).
[CrossRef]

Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[CrossRef]

Opt. Quantum Electron.

Y. Yasuno, Y. Sando, J. I. Sugisaka, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “In-focus Fourier-domain optical coherence tomography by complex numerical method,” Opt. Quantum Electron. 37(13-15), 1185–1189 (2005).
[CrossRef]

Proc. SPIE

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 684700 (2008).

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, “Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry,” Proc. SPIE 4619, 16–21 (2002).
[CrossRef]

Other

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography - Technology and Applications (Springer, 2008).

Supplementary Material (2)

» Media 1: AVI (11509 KB)     
» Media 2: AVI (5936 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical Setup with a and b for the extended focus and standard configuration respectively. Blue: detection path. SS: Swept source, FC: Fiber coupler, PC: Polarization control, DC: Dispersion compensation, A: Axicon, M: Mirror, L1 to L6: Lenses, Galvo: Scanning mirrors, DBD: Dual-balanced detector, Circ: Circulator.

Fig. 2
Fig. 2

Theoretical lateral PSFs for the central wavelength in dB comparing the different configurations. The side lobes exhibit a stronger attenuation close to the focus in the extended tight focus, leading to a better resolution at that position, while the central lobe is less attenuated along the depth in the extended focus leading to a larger axial depth.

Fig. 3
Fig. 3

Measurement with a 4.5µm microsphere on a glass plate for several depths acquired with standard, extended tight focus and extended focus configuration in a, b and c respectively (numbers in µm; linear intensity scale). d: Average radial intensity profiles for selected depths showing similar FWHM at the focal position and the increase of the spot size for standard configuration with depth.

Fig. 5
Fig. 5

Depth-dependent signal intensity averaged across a tomogram.

Fig. 4
Fig. 4

Comparison of tomograms. a, b & c: Single tomogram, d, e & f: Average of 6 tomograms taken from the 3D data set, a & d: Standard, b & e: Extended tight focus, c & f: Extended focus. Scale bar denotes 250µm in every picture. Lateral marks indicate focal depth positions.

Fig. 6
Fig. 6

3D renderings of 2x2mm sections acquired with a: Extended focus configuration and different depths positions of Fig. 7 highlighted in blue, b: Extended tight focus configuration and cut to appreciate the lateral resolution of the system.

Fig. 7
Fig. 7

Comparison of en-face pictures for different depths. Left: Standard, middle: Extended tight focus, right: Extended focus. a, b & c: 240µm, d, e & f: 300µm, g, h & i: 380µm, j, k & l: 910µm deep under the surface respectively. Scale bar denotes 250µm in every picture.

Fig. 8
Fig. 8

Effect of a hair on the signal attenuation along the depth. a, c & e: Standard, b, d & f: xf-configuration. a & b: Tomograms, c, d, e & f: En-face views at 2 different depths indicated by the white lines in the left tomogram showing a progressing reduction of the hair’s influence while it remains constant with the standard configuration. Scale bar denote 250µm in every picture.

Fig. 9
Fig. 9

Tomograms taken with the same glass plate orientation, almost perpendicular to the optical axis, with the reference power adjusted to avoid getting out of the range of the ADC. Left: Standard showing a limited penetration depth as well as a masked first interface, right: Extended focus remaining unaffected by the glass plate reflection. Scale bar denotes 250µm.

Fig. 10
Fig. 10

Result of averaged variance tomograms at a single position. The static tissue appears black while motion is represented by white values. Blood vessels are visible, however their axial extend determination is limited by decorrelation. Left: Standard, right: Extended focus. Green arrows pointing the skin surface in contact with the glass plate. Scale bar denotes 250µm.

Fig. 11
Fig. 11

Normalized mean variance depth profile through a vessel showing a better defined vessel axial size and a steeper decrease of the signal with the extended focus scheme.

Fig. 12
Fig. 12

3D rendering of processed speckle variance stacks. 2x2mm section acquired with the extended focus setup. Left: Volume showing a large dynamic range of vessels for different depths (Media 1). Right: Volume taken at a different position showing a more planar vessel structure (Media 2).

Fig. 13
Fig. 13

a: 3D rendering of microcirculation embedded in the structural data. 2x2mm cut at different depths to show the planar microcirculation network close to the epidermis/dermis transition and bigger vessels deeper in tissue. b-d: En-face projection at a depth of about 330µm over 50µm (b), 460µm over 200µm (c), and 880µm over 120µm (d). e: Fusion of b, c & d microcirculation in the R, G & B color channels respectively. Scale bar denotes 250µm in every picture.

Fig. 14
Fig. 14

Comparison of single tomograms acquired at the A-Scan rate of 110 and 440kHz with extended focus configuration in a and b respectively. Scale bar denotes 250µm.

Metrics