Abstract

We propose and demonstrate an improved heterodyne coherent anti-Stokes Raman scattering (CARS) measurement with a rapid phase modulation and temporal displacement of the background, to simplify signal extraction and effectively reduce a nonresonant background (NRB). This method is a modification of the single-beam CARS spectroscopy originally proposed by Oron et al. in which a narrowband phase modulation is used to enhance contrast between resonant signals and the NRB through heterodyne detection [Phys. Rev. Lett. 89, 273001 (2002)]. In our scheme, a large delay between the narrow- and broadband components enables us to reduce the NRB while maintaining signal enhancement by heterodyne detection. We develop a frequency-resolved Michelson interferometer in which the narrow- and broadband components are spatially separated and recombined with an arbitrary delay. We show that sharp Raman lines can be obtained from chloroform molecules by the observation of difference spectra and phase sensitive detection. The spectral resolution achieved, which is limited by that of the spectrometer we used, is < 8 cm−1. This method can potentially be extended to make real-time measurements by further developing a spectrometer that directly accumulates difference spectra.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
    [CrossRef] [PubMed]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [CrossRef] [PubMed]
  3. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
    [CrossRef] [PubMed]
  4. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  5. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653–667 (2000).
    [CrossRef]
  6. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
    [CrossRef]
  7. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32, 3370–3372 (2007).
    [CrossRef] [PubMed]
  8. J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
    [CrossRef]
  9. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).
  10. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
    [CrossRef]
  11. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
    [CrossRef]
  12. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef] [PubMed]
  13. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31, 2495–2497 (2006).
    [CrossRef] [PubMed]
  14. B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008).
    [CrossRef] [PubMed]
  15. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17, 11259–11266 (2009).
    [CrossRef] [PubMed]
  16. Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
    [CrossRef] [PubMed]
  17. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
    [CrossRef]
  18. Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008).
    [CrossRef]
  19. M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).
  20. E. Frumker, E. Tal, and Y. Silberberg, “Femtosecond pulse-shape modulation at nanosecond rates,” Opt. Lett. 30, 2769–2798 (2005).
    [CrossRef]
  21. R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935).
    [CrossRef]
  22. K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
    [CrossRef]
  23. K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
    [CrossRef]
  24. N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

2011

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

2009

2008

B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008).
[CrossRef]

2007

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32, 3370–3372 (2007).
[CrossRef] [PubMed]

2006

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31, 2495–2497 (2006).
[CrossRef] [PubMed]

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

2005

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

E. Frumker, E. Tal, and Y. Silberberg, “Femtosecond pulse-shape modulation at nanosecond rates,” Opt. Lett. 30, 2769–2798 (2005).
[CrossRef]

2004

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

2003

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

2002

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

2001

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

2000

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653–667 (2000).
[CrossRef]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1990

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

1979

J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
[CrossRef]

1976

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

1935

R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935).
[CrossRef]

Adachi, S.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Baum, P.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Bodermann, B.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

Buckup, T.

Chen, B.-C.

B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008).
[CrossRef] [PubMed]

Cheng, J.-X.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

Chong, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

Cicerone, M. T.

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32, 3370–3372 (2007).
[CrossRef] [PubMed]

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Frumker, E.

Greve, J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Greve, M.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Hashimoto, H.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Holtom, G. R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Horikoshi, K.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
[CrossRef]

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

Ishida, K.

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

Ishii, N.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Isobe, K.

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Kannari, F.

Kawano, H.

Kimura, T.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Kobayashi, T.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Lang, R.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
[CrossRef]

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

Lee, Y. J.

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32, 3370–3372 (2007).
[CrossRef] [PubMed]

Lin, S.-H.

B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008).
[CrossRef] [PubMed]

Liu, Y.

Lu, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Matsuda, H.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Midorikawa, K.

Min, W.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Misawa, K.

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
[CrossRef]

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

Miyawaki, A.

Mizuno, H.

Motzkus, M.

Nagashima, Y.

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Otto, C.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Oudar, J.-L.

J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
[CrossRef]

Puppels, G. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Rank, D. H.

R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935).
[CrossRef]

Riedle, E.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Robert-Nicoud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

Roh, W. B.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Shen, Y. R.

J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
[CrossRef]

Silberberg, Y.

E. Frumker, E. Tal, and Y. Silberberg, “Femtosecond pulse-shape modulation at nanosecond rates,” Opt. Lett. 30, 2769–2798 (2005).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Smith, R. W.

J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
[CrossRef]

Suda, A.

Suzuki, T.

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

Tal, E.

Tanaka, M.

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Telle, H. R.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Terada, S.

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

Tokunaga, E.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Tsuji, S.

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

von Vacano, B.

Wood, R. W.

R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935).
[CrossRef]

Xie, X. S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653–667 (2000).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Appl. Phys.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, “High-contrast chemical imaging with gated heterodyne coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. B81, 875–879 (2005).

Appl. Phys. Lett.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 041108 (2008).
[CrossRef]

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

J.-L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758–760 (1979).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J. Chem. Phys.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Chem. Phys. B105, 1277–1280 (2001).

Y. Nagashima, T. Suzuki, S. Terada, S. Tsuji, and K. Misawa, “In vivo molecular labeling of halogenated volatile anesthetics via intrinsic molesular vibrations using nonlinear Raman spectroscopy,” J. Chem. Phys. 134024525 (2011).
[CrossRef] [PubMed]

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127, 159901 (2007).
[CrossRef]

J. Phys. Chem. B

B.-C. Chen and S.-H. Lin, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 112, 3653–3661 (2008).
[CrossRef] [PubMed]

J. Raman Spectrosc.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653–667 (2000).
[CrossRef]

Nature

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105–1109 (2009).
[CrossRef] [PubMed]

Opt. Commun.

K. Horikoshi, K. Misawa, R. Lang, and K. Ishida, “Sensitive femtosecond wave-packet spectrometer,” Opt. Commun. 259, 723–726 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A70, 023811 (2004).

R. W. Wood and D. H. Rank, “The Raman spectrum of heavy chloroform,” Phys. Rev. 48, 63–65 (1935).
[CrossRef]

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. Femtosecond oscillator output is sent into the frequency-resolved interferometer to perform phase modulation while a delay is simultaneously introduced.

Fig. 2
Fig. 2

Raw data (upper five panels) and difference CARS spectra (lower five panels) with different probe delays.

Fig. 3
Fig. 3

Difference spectra of CARS spectra with (a) a 4-nm-bandwidth filter and (b) a 0.3-nm-bandwidth filters. Black and red curves are obtained with and without delay of the probe respect to the pump.

Fig. 4
Fig. 4

Phase-sensitive detection for CARS measurement with (a) 4-nm bandwidth filter and (b) 0.3-nm bandwidth filter. Delays are 2 and 3 ps for (a) and (b).

Fig. 5
Fig. 5

Comparison of two different analyses of data sets acquired by (a) 4-nm-bandwidth filter and (b) 0.3-nm- bandwidth filter. Black and red curves were the difference spectra E AC(λ) and the phase-sensitive spectra E AC(λ), respectively.

Tables (1)

Tables Icon

Table 1 Comparison of Previously Measured Vibrational Frequencies of Chloroform Molecules [21] and those Measured with our Method

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E AC ( λ ) = i = 1 100 | E i ( λ ) E ( λ ) | E ( λ ) .
E PS ( λ ) = Σ i = 1 100 ( E i ( λ ) E ( λ ) ) cos θ i E ( λ ) .
E env ( λ ) = 2 | IFT { FT { E PS ( λ ) } Θ ( k ) } | .
1 Ω > τ > t p 1 ω p .

Metrics