Abstract

The outer wing casings (elytra) of the weevil Eupholus magnificus are marked by yellow and blue bands. We have investigated the scales covering the elytra by using microspectrophotometry, imaging scatterometry, scanning electron microscopy and Fourier transform analysis. We demonstrate that the scales in the yellow elytral bands comprise highly ordered 3D photonic crystal structures, whereas the scales of the blue bands comprise quasi-ordered 3D photonic structures. Both systems, highly contrasting in their periodic order, create approximately angle-independent colour appearances in the far-field. The co-existence of these two contrasting forms of 3D structural order in the same single species is certainly uncommon in natural biological systems and has not been reported in the photonic literature.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University Press, Princeton, NJ, 2008).
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  3. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35(15), 2523–2525 (2010).
    [CrossRef] [PubMed]
  4. H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
    [CrossRef]
  5. D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
    [CrossRef]
  6. M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
    [CrossRef]
  7. H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
    [CrossRef]
  8. A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  9. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  10. K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
    [CrossRef] [PubMed]
  11. L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
    [CrossRef]
  12. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
    [CrossRef] [PubMed]
  13. M. Srinivasarao, “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [CrossRef]
  14. S. Kinoshita, Structural Colours in the Realm of Nature (World Scientific, Singapore, 2008).
  15. O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
    [CrossRef] [PubMed]
  16. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
    [CrossRef] [PubMed]
  17. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  18. E. J. Denton, “Reflectors in fishes,” Sci. Am. 224(1), 64–72 (1971).
    [CrossRef]
  19. T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009).
    [CrossRef]
  20. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
    [CrossRef]
  21. K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
    [CrossRef]
  22. P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
    [CrossRef] [PubMed]
  23. J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
    [CrossRef] [PubMed]
  24. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
    [CrossRef] [PubMed]
  25. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
    [PubMed]
  26. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [CrossRef] [PubMed]
  27. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
  28. V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
    [CrossRef] [PubMed]
  29. M. C. Hutley, Diffraction Gratings, Techniques of Physics 6 (Academic Press, London, 1982).
  30. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations-Concepts and Applications of Voronoi Diagrams (Second Edition). (John Wiley and Sons, Chichester, 2000).
  31. A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).
  32. R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004).
    [CrossRef] [PubMed]
  33. M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
    [CrossRef]
  34. P. Vukusic, and J. R. Sambles, “Shedding light on butterfly wings” Proc. SPIE 4438, 0277–786X/01 (2001).
  35. C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997).
    [CrossRef]
  36. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
    [CrossRef]
  37. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
    [CrossRef]
  38. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  39. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  40. T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
    [CrossRef]
  41. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
    [CrossRef] [PubMed]

2010 (5)

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
[CrossRef]

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35(15), 2523–2525 (2010).
[CrossRef] [PubMed]

2009 (7)

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
[CrossRef] [PubMed]

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
[CrossRef]

T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009).
[CrossRef]

2008 (3)

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[CrossRef]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

2007 (3)

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

2006 (3)

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[CrossRef] [PubMed]

2005 (1)

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004).
[CrossRef] [PubMed]

2003 (2)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

2000 (3)

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).

1999 (1)

M. Srinivasarao, “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

1998 (2)

A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1997 (1)

C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997).
[CrossRef]

1984 (1)

D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[CrossRef]

1971 (1)

E. J. Denton, “Reflectors in fishes,” Sci. Am. 224(1), 64–72 (1971).
[CrossRef]

Aizenberg, J.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Bálint, Z.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

Bartl, M. H.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

Baumberg, J.

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Bir?, L.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Biró, L. P.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Brady, P.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

Charlton, M.

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Cheng, C. C.

C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997).
[CrossRef]

Clays, K.

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

Crespi, V. H.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Davis, S.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

De Raedt, H.

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
[CrossRef]

Denton, E. J.

E. J. Denton, “Reflectors in fishes,” Sci. Am. 224(1), 64–72 (1971).
[CrossRef]

Deparis, O.

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Diao, Z.

Ding, T.

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

Divliansky, I.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

Dufresne, E. R.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

EnglUnd, D.

H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Ertz, D.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Florescu, M.

M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
[CrossRef]

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

Gösele, U.

A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).

Hallam, B.

P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

Hatton, B.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Holliday, K. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

Hooper, I. R.

Houdré, R.

Huang, H.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Huang, Z. K.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Jágerská, J.

Kertész, K.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Kuo, H. C.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Large, M.

A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Lee, K. Y.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Leertouwer, H. L.

Levine, D.

D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[CrossRef]

Li, A. P.

A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).

Lin, C. H.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Lousse, V.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Mark, G.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

Márk, G. I.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

Mayer, T. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

McKenzie, D.

A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Michielsen, K.

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
[CrossRef]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[CrossRef]

Mishchenko, L.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Mochrie, S. G. J.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Müller, F.

A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).

Narayanan, S.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Netti, M.

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Noh, H.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Noyes, J.

P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

Noyes, J. A.

Ohtaka, K.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Osuji, C. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Parker, A.

A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Parker, G.

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Pirih, P.

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Prum, R. O.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004).
[CrossRef] [PubMed]

Rassart, M.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Sandhage, K. H.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Sandy, A.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Saranathan, V.

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

Sarrazin, M.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Sato, T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

Scherer, A.

C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997).
[CrossRef]

Schultz, T. D.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

Seago, A. E.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Song, K.

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

M. Srinivasarao, “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Stavenga, D. G.

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
[CrossRef]

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[CrossRef]

Steinhardt, P.

M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
[CrossRef]

D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[CrossRef]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Thomas, N. L.

Torquato, S.

M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
[CrossRef]

Torres, R. H.

R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004).
[CrossRef] [PubMed]

Trzeciak, T. M.

T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009).
[CrossRef]

Tung, C. H.

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

Vandenbem, C.

Vertésy, Z.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

Vértesy, Z.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Vigneron, J.

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

Vigneron, J. P.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

O. Deparis, C. Vandenbem, M. Rassart, V. Welch, and J. P. Vigneron, “Color-selecting reflectors inspired from biological periodic multilayer structures,” Opt. Express 14(8), 3547–3555 (2006).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Vuckovic, J.

H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Vukusic, P.

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009).
[CrossRef]

P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wehling, M. F.

Welch, V.

Yoshioka, S.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Yu, C. C.

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Zhang, H.

Zoorob, M.

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Adv. Mater. (1)

T. Ding, K. Song, K. Clays, and C. H. Tung, “Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field,” Adv. Mater. 21(19), 1936–1940 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667 (2003).
[CrossRef]

Chem. Rev. (1)

M. Srinivasarao, “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

J. Appl. Phys. (1)

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[CrossRef]

J. Exp. Biol. (2)

R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004).
[CrossRef] [PubMed]

A. Parker, D. McKenzie, and M. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

J. R. Soc. Interface (4)

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface 5(18), 85–94 (2008).
[CrossRef]

K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface 7(46), 765–771 (2010).
[CrossRef]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).

J. Vac. Sci. Technol. B (1)

C. C. Cheng and A. Scherer, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15(6), 2764–2767 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes,” Jpn. J. Appl. Phys. 49(2), 022101 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

M. Zoorob, M. Charlton, G. Parker, J. Baumberg, and M. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index material,” Mater. Sci. Eng. B 74(1-3), 168–174 (2000).
[CrossRef]

Mater. Sci. Eng. C (1)

L. Birό, K. Kertész, Z. Vertésy, G. Mark, Z. Bálint, V. Lousse, and J. Vigneron, “Living photonic crystals: Butterfly scales — Nanostructure and optical properties,” Mater. Sci. Eng. C 27, 941–946 (2007).
[CrossRef]

Nat. Mater. (2)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

H. Altug, D. EnglUnd, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Florescu, S. Torquato, and P. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80(15), 155112 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2), 021922 (2006).
[CrossRef] [PubMed]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[CrossRef] [PubMed]

T. M. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete worm Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(6), 061908 (2009).
[CrossRef]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Levine and P. Steinhardt, “Quasicrystals: A New Class of Ordered Structures,” Phys. Rev. Lett. 53(26), 2477–2480 (1984).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11676–11681 (2010).
[CrossRef] [PubMed]

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Sci. Am. (1)

E. J. Denton, “Reflectors in fishes,” Sci. Am. 224(1), 64–72 (1971).
[CrossRef]

Science (3)

P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Solid-St. (1)

A. P. Li, F. Müller, and U. Gösele, “Electrochem. “Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Solid-St. 3, 155112 (2000).

Other (5)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University Press, Princeton, NJ, 2008).

P. Vukusic, and J. R. Sambles, “Shedding light on butterfly wings” Proc. SPIE 4438, 0277–786X/01 (2001).

M. C. Hutley, Diffraction Gratings, Techniques of Physics 6 (Academic Press, London, 1982).

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations-Concepts and Applications of Voronoi Diagrams (Second Edition). (John Wiley and Sons, Chichester, 2000).

S. Kinoshita, Structural Colours in the Realm of Nature (World Scientific, Singapore, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The weevil Eupholus magnificus. The elytra are marked by yellow and blue bands, with a diameter of a few mm, due to differently coloured scales. The coloured stripes alternate with dark bands where there are no scales present on the weevil’s elytra: bar 4 mm. (b) Epi-illumination of the scales in the yellow elytral bands shows highly domained scales: bar 50 µm. (c) The scales in the blue bands are more or less homogenous in coloration: bar 50 µm.

Fig. 2
Fig. 2

Reflectance spectra of E. magnificus. (a) Spectra obtained from an area of the yellow (red curve) and blue (black curve) band of the elytra (inset), measured with a bifurcated probe spectrometer. (b) Epi-illumination microspectrophotometry (MSP) of various domains of a yellow scale (inset: a yellow scale showing the many coloured domains). (c) MSP of a blue scale rotated insteps of 2°.

Fig. 3
Fig. 3

Scattering patterns from the yellow (a) and blue (b) scales of E. magnificus. From left to right the scales were rotated in steps of 10° (the red rings represent scattering angles of 5°, 30°, 60° and 90°).

Fig. 4
Fig. 4

SEM images of a yellow scale (a, b) and a blue scale (c, d) of E. magnificus, cross-sectioned using FIB milling. Below the ridged surfaces (a, c), in the yellow scale a highly ordered periodic 3D-lattice exists (b), whereas in the blue scale the lattice is quasi-ordered (d). (a, c): bar 10 µm, (b, d): bar 2 µm.

Fig. 5
Fig. 5

Fourier transforms of the photonic nanostructures within the yellow scales (a) and blue scales (b) of E. magnificus.

Fig. 6
Fig. 6

Photonic band diagram of an ideal inverse FCC photonic crystal with cubic supercell length a = 368 nm and radius of air spheres r = 100 nm. The striped boxes highlight the partial band-gaps at the X, L and K points corresponding to the reflectance maxima shown in Fig. 2b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = P n ln ( P n ) ln ( N )

Metrics