Abstract

We report a growth of p-CuO nanowire arrays with a simple thermal oxidation and a fabrication of nanowire-based heterojunctions by coating the p-CuO nanowire arrays in an n-ZnO layer through a thermal decomposition method. Their optoelectronic properties and photovoltaic performance were investigated. Compared with the conductance in the dark, a 154% increase in photoconductance was obtained under a white light illumination of 100 mW/cm2. The heterojunctions exhibit an obvious photocurrent increment of 0.264 mA under the illumination of 141 mW/cm2. After annealing the heterojunctions at 100°C for 25 min, a larger open-circuit voltage of 0.37 V was obtained, the short-circuit current density increase to 0.63 mA/cm2 from original 0.49 mA/cm2. The overall power conversion efficiency is 0.1%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
    [CrossRef]
  2. N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
    [CrossRef] [PubMed]
  3. S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
    [CrossRef]
  4. L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).
  5. J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
    [CrossRef] [PubMed]
  6. W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
    [CrossRef] [PubMed]
  7. S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
    [CrossRef]
  8. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
    [CrossRef]
  9. K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
    [CrossRef]
  10. B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
    [CrossRef] [PubMed]
  11. J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
    [CrossRef] [PubMed]
  12. D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
    [CrossRef]
  13. K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
    [CrossRef]
  14. S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
    [CrossRef]
  15. Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
    [CrossRef] [PubMed]
  16. X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
    [CrossRef]
  17. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
    [CrossRef]
  18. Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
    [CrossRef]
  19. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
    [CrossRef] [PubMed]
  20. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
    [CrossRef] [PubMed]
  21. Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
    [CrossRef] [PubMed]

2011 (1)

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

2010 (3)

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
[CrossRef]

2009 (9)

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
[CrossRef] [PubMed]

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

2008 (3)

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

2007 (1)

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

2006 (1)

D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
[CrossRef]

2005 (1)

S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
[CrossRef]

2003 (1)

K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
[CrossRef]

2002 (1)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Ager, J. W.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Aiura, Y.

K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
[CrossRef]

Anandan, S.

S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
[CrossRef]

Bando, H.

K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
[CrossRef]

Bando, Y.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Bao, H.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Bao, Q.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Bao, Q. L.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Bao, X.-Y.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Beaupré, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Bulovic, V.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Cho, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Chueh, Y.-L.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Coates, N.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Cole, J. J.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Crawford, S. C.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Dayal, S.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

Dierre, B.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Ding, Y.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Do, J.-W.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Ergen, O.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Fan, Z.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Fang, X.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Gautam, U. K.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Ginley, D. S.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

Golberg, D.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Gong, H.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Gradecak, S.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Greene, L. E.

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

Guo, J.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Guo, Z.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Gutmann, J. S.

N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
[CrossRef] [PubMed]

Haberkorn, N.

N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
[CrossRef] [PubMed]

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Hesse, H. C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Ho, J. C.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Iza, D. C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Jacobs, H. O.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Javey, A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Kapadia, R.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Ke, C.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Kind, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Knuesel, R. J.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Kopidakis, N.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

LaPierre, R. R.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Law, M.

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Leclerc, M.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Lee, K.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Leu, P. W.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Li, B.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Li, B. J.

X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
[CrossRef]

Li, C. M.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Li, J. C.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Liao, L.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Liu, Y.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Loh, K. P.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

MacManus-Driscoll, J. L.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Messer, B.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Moon, J. S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Moriwaki, A.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Moses, D.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Musselman, K. P.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Neale, S.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Olson, D. C.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

Park, S. H.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Rathore, A. A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Razavi, H.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Reichertz, L. A.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Ren, S.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Roy, A.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Ruebusch, D. J.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Rumbles, G.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

Scheu, C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Schmidt-Mende, L.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Sekiguchi, T.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Shen, D.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Shen, Z. X.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Soci, C.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Song, Q.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Takahashi, T.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Tambe, M.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Tao, M.

D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
[CrossRef]

Theato, P.

N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
[CrossRef] [PubMed]

Thompson, D. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Tonooka, K.

K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
[CrossRef]

Wang, D.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Wang, P.

X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
[CrossRef]

Wang, W.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Wang, X.

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

Wang, Z.-L.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Wei, W.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

Wen, X.

S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
[CrossRef]

Wisnet, A.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Wu, D.

D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
[CrossRef]

Wu, M.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Wu, T.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Yan, B.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Yan, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yan, J.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Yang, H.

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Yang, P.

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yang, S.

S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
[CrossRef]

Yu, K.

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Yu, T.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

Yuhas, B. D.

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

Zhang, J.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Zhang, J. X.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Zhang, L.

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

Zhang, Q.

D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
[CrossRef]

Zhang, Z.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Zhao, D.

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Zhao, N.

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

Zhao, X. H.

X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
[CrossRef]

Zheng, Z.

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

N. Haberkorn, J. S. Gutmann, and P. Theato, “Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells,” ACS Nano 3(6), 1415–1422 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(35), E254–E258 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, and B. Li, “Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction,” Appl. Phys. Lett. 93(16), 163501 (2008).
[CrossRef]

Chem. Commun. (Camb.) (1)

X. H. Zhao, P. Wang, and B. J. Li, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. (Camb.) 46(36), 6768–6770 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” J. Phys. Chem. B 111, 18451–18456 (2007).

Mater. Chem. Phys. (1)

S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys. 93(1), 35–40 (2005).
[CrossRef]

Nano Lett. (6)

S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Lett. 11(2), 408–413 (2011).
[CrossRef]

J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett. 8(5), 1477–1481 (2008).
[CrossRef] [PubMed]

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[CrossRef] [PubMed]

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[CrossRef]

J. Yan, X. Fang, L. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, “Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures,” Nano Lett. 8(9), 2794–2799 (2008).
[CrossRef] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[CrossRef] [PubMed]

Nano Res. (1)

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Nanotechnology (2)

Q. Bao, C. M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure,” Nanotechnology 20(6), 065203 (2009).
[CrossRef] [PubMed]

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology 20(8), 085203 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater. 8(8), 648–653 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[CrossRef]

Phys. Rev. B (1)

D. Wu, Q. Zhang, and M. Tao, “LSDA+U study of cupric oxide: electronic structure and native point defects,” Phys. Rev. B 73(23), 235206 (2006).
[CrossRef]

Thin Solid Films (1)

K. Tonooka, H. Bando, and Y. Aiura, “Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors,” Thin Solid Films 445(2), 327–331 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication illustration of CuO NW arrays coated in ZnO layer.

Fig. 2
Fig. 2

Electron micrographs of CuO nanowires and the coated structure. (a) Top view scanning electron microscope (SEM) image of the CuO NW arrays fabricated by heating a copper foil at 500°C for 3 hr. (b) Cross section view SEM image of the CuO NW arrays. (c) Transmission electron microscope (TEM) image of a single CuO NW. (d) High resolution TEM lattice image of a single CuO NW selected from Fig. 2c. (e) Cross-section SEM image of the CuO NW arrays coated by the n-ZnO shell. (f) Cross-section SEM image of the CuO NW arrays coated in the ZnO layer. (g) Cross-section SEM image of the CuO NW arrays shows totally coated and covered by the ZnO layer. (h) Top view SEM image of CuO NWs coated in ZnO layer and (i) the corresponding EDS spectrum.

Fig. 3
Fig. 3

(a) Wide scan XPS spectrum and (b-d) Cu 2p, Zn 2p, and O 1s core level XPS spectra of the CuO NW arrays coated in ZnO layer.

Fig. 4
Fig. 4

XRD spectrum of the CuO NW arrays. (a) without ZnO coated and (b) with ZnO coated.

Fig. 5
Fig. 5

Current-voltage relations of the CuO NW arrays coated in ZnO layer. (a) I-V characteristics in the dark at room temperature. (b) I-V characteristics in the dark and a standard AM 1.5 global solar spectrum illumination (i.e. 100 mW/cm2). (c) Photocurrent-voltage curves under different illuminations of 11−141 mW/cm2. (d) Photocurrent-illuminations curves at different bias voltages.

Fig. 6
Fig. 6

(a) Schematic energy band diagram of the CuO-ZnO heterojunctions in the thermal equilibrium condition. (b) Schematic energy band diagram of the heterojunctions showing the photogenerated carrier transfer process under standard AM 1.5 illumination and forward bias.

Fig. 7
Fig. 7

(a) Time-related photocurrent of the CuO nanowire arrays coated in ZnO layer to the periodic light irradiation (Jlight = 141 mW/cm2, tOn/Off = 30 s) at a bias voltage of 0.5 V. (b) Current density-voltage curve (before and after annealing) in the standard AM 1.5 global solar spectrum illumination condition for the photovoltaic performance.

Metrics