Abstract

Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
    [CrossRef]
  2. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).
    [CrossRef] [PubMed]
  3. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
    [CrossRef]
  4. T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique,” in SAE Technical Paper Series 2006–01–3336 (2006).
  5. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
    [CrossRef]
  6. D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
    [CrossRef]
  7. M. Löffler, K. Kröckel, P. Koch, F. Beyrau, and A. Leipertz, “Simultaneous Quantitative Measurements of Temperature and Residual Gas Fields inside a Fired SI-Engine Using Acetone laser-induced fluorescence,” SAE Technical Paper Series 2009–01–0656 (2009).
  8. B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010).
    [CrossRef]
  9. M. Löffler, B. U. Melcher, A. Braeuer, F. Beyrau, and A. Leipertz, “Behavior of the Acetone Laser-Induced Fluorescence under Engine Relevant Conditions for the Simultaneous Visualization of Temperature and Concentration Fields,” SAE Technical Paper Series 2007–01–0642 (2007).
  10. W. Berthold, and U. Löffler, Lexikon sicherheitstechnsicher Begriffe der Chemie (Verlag Chemie, Weinheim, 1981).
  11. H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, Weinheim, 2004).
  12. C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926).
    [CrossRef]
  13. J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964).
    [CrossRef]
  14. B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
    [CrossRef]
  15. K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000).
    [CrossRef]
  16. J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).
  17. F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929).
    [CrossRef] [PubMed]
  18. D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968).
    [CrossRef]
  19. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering,” Appl. Opt. 43(29), 5564–5574 (2004).
    [CrossRef] [PubMed]
  20. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, Netherlands, 1996).
  21. D. A. Long, Raman Spectroscopy (McGraw-Hill Inc., New York, 1977).
  22. W. Hirsch, and E. Brandes, Report: “Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken,” (Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, available at: http://www.ptb.de/de/org/3/34/341/tzp.pdf , 2005).

2010 (1)

B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010).
[CrossRef]

2009 (2)

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
[CrossRef]

2008 (1)

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

2004 (1)

2000 (2)

K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
[CrossRef]

1997 (1)

1976 (1)

J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).

1974 (1)

B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
[CrossRef]

1968 (1)

D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968).
[CrossRef]

1964 (1)

J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964).
[CrossRef]

1929 (1)

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929).
[CrossRef] [PubMed]

1926 (1)

C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926).
[CrossRef]

Barnard, J. A.

J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964).
[CrossRef]

Bruneaux, G.

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
[CrossRef]

Capelin, B. C.

B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
[CrossRef]

Cheung, B. H.

B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010).
[CrossRef]

Devillers, R.

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
[CrossRef]

Egermann, J.

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
[CrossRef]

Ernst, J.

J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).

Fitzgerald, R. P.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

Grisch, F.

Hanson, R. K.

B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010).
[CrossRef]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).
[CrossRef] [PubMed]

Hidaka, Y.

K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000).
[CrossRef]

Hinshelwood, C. N.

C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926).
[CrossRef]

Hoare, D. E.

D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968).
[CrossRef]

Honeyman, T. W.

J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964).
[CrossRef]

Hutchison, W. K.

C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926).
[CrossRef]

Ingram, G.

B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
[CrossRef]

Kokolis, J.

B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
[CrossRef]

Leipertz, A.

Li, T. M.

D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968).
[CrossRef]

Luong, M.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

Rice, F. O.

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929).
[CrossRef] [PubMed]

Rothamer, D. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

Sato, K.

K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000).
[CrossRef]

Schulz, C.

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
[CrossRef]

Seeger, T.

Sick, V.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
[CrossRef]

Snyder, J. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

Spindler, K.

J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).

Steeper, R. R.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

Thurber, M. C.

Vollrath, R. E.

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929).
[CrossRef] [PubMed]

Wagner, H.

J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).

Zhang, R.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000).
[CrossRef]

B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[CrossRef]

Ber. Bunsenges. Phys. Chem (1)

J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).

Combust. Flame (2)

K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000).
[CrossRef]

D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968).
[CrossRef]

Microchem. J. (1)

B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964).
[CrossRef]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926).
[CrossRef]

Other (8)

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, and A. Leipertz, “Simultaneous Quantitative Measurements of Temperature and Residual Gas Fields inside a Fired SI-Engine Using Acetone laser-induced fluorescence,” SAE Technical Paper Series 2009–01–0656 (2009).

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique,” in SAE Technical Paper Series 2006–01–3336 (2006).

M. Löffler, B. U. Melcher, A. Braeuer, F. Beyrau, and A. Leipertz, “Behavior of the Acetone Laser-Induced Fluorescence under Engine Relevant Conditions for the Simultaneous Visualization of Temperature and Concentration Fields,” SAE Technical Paper Series 2007–01–0642 (2007).

W. Berthold, and U. Löffler, Lexikon sicherheitstechnsicher Begriffe der Chemie (Verlag Chemie, Weinheim, 1981).

H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, Weinheim, 2004).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, Netherlands, 1996).

D. A. Long, Raman Spectroscopy (McGraw-Hill Inc., New York, 1977).

W. Hirsch, and E. Brandes, Report: “Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken,” (Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, available at: http://www.ptb.de/de/org/3/34/341/tzp.pdf , 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical setup.

Fig. 2
Fig. 2

Raman spectra taken at a pressure of 30 bar with an initial (CH3)2CO concentration of 1.9% and a temperature of 598 K (a) or 748 K (b).

Fig. 3
Fig. 3

Raman spectra taken at a temperature of 698 K and a pressure of 10 bar (a) or 30 bar (b).

Tables (1)

Tables Icon

Table 1 Raman Transitions and Signal Wavelength of Different Molecular Transitions-Relevant for (CH3)2CO Decomposition

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν R = ν 0 ± Δ ν ˜ R ,
I R = k I 0 n L ( σ Ω ) Ω ,
(CH 3 ) 2 CO+4O 2 3 C O 2 + 3 H 2 O .

Metrics