Abstract

We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
    [CrossRef]
  2. K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials 21, 667–681 (2000).
    [CrossRef] [PubMed]
  3. R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).
  4. J. B. Park, The Biomedical Engineering Handbook: Second Edition , Joseph D. Bronzino, ed. (CRC Press LLC, 2000), Vol. II.
  5. I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
    [CrossRef] [PubMed]
  6. L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
    [CrossRef]
  7. A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
    [CrossRef] [PubMed]
  8. S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997).
    [CrossRef]
  9. C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
    [CrossRef]
  10. M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
    [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
    [CrossRef] [PubMed]
  12. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
    [CrossRef]
  13. E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.
  14. A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).
  15. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  16. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  17. P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
    [CrossRef]
  18. H. Kalaycioglu, B. Oktem, C. Senel, P. P. Paltani, and F. Ö. Ilday, “Micro joule-energy, 1 MHz-repetition rate pulses from an all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
    [CrossRef] [PubMed]
  19. M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
    [CrossRef]
  20. I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
    [CrossRef] [PubMed]
  21. U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
    [CrossRef] [PubMed]
  22. Y. P. Kathuria, “Laser microprocessing of metallic stent for medical therapy,” J. Mater. Process. Technol. 170(3), 545–550 (2005).
    [CrossRef]
  23. K. Weman, Welding Processes Handbook (CRC Press LLC, 2003).
  24. I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” Tribol. Lett. 17, 733–737 (2004).
    [CrossRef]
  25. S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
    [CrossRef]
  26. H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
    [CrossRef]
  27. D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
    [CrossRef] [PubMed]
  28. D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
    [CrossRef] [PubMed]
  29. P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
    [CrossRef]
  30. J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

2007 (2)

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[CrossRef]

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

2006 (3)

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
[CrossRef] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

2005 (4)

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

Y. P. Kathuria, “Laser microprocessing of metallic stent for medical therapy,” J. Mater. Process. Technol. 170(3), 545–550 (2005).
[CrossRef]

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

2004 (3)

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” Tribol. Lett. 17, 733–737 (2004).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Weman, Welding Processes Handbook (CRC Press LLC, 2003).

2002 (1)

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

2001 (2)

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

2000 (3)

K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials 21, 667–681 (2000).
[CrossRef] [PubMed]

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

J. B. Park, The Biomedical Engineering Handbook: Second Edition , Joseph D. Bronzino, ed. (CRC Press LLC, 2000), Vol. II.

1999 (3)

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

1997 (3)

D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
[CrossRef] [PubMed]

S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997).
[CrossRef]

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

1967 (1)

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Alaerts, J. A.

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

Alvensleben, F. v.

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997).
[CrossRef]

Anselme, K.

K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials 21, 667–681 (2000).
[CrossRef] [PubMed]

Baquey, Ch.

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Basl, M. F.

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

Basle, M. F.

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

Batani, D.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Bhner, M.

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

Branemark, P-I

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

Branemark, R.

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Budunoglu, I. L.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

Buser, D.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Chappard, D.

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

Chian, K. S.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Chichkov, B. N.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cochran, D. L.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Composto, R. J.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

Dai, Y.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Damen, T. C.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

De Cupere, V. M.

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

Degasne, I.

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

Demais, V.

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

Desai, T.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Dietrich, F.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

Duncan, A. C.

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Etsion, I.

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” Tribol. Lett. 17, 733–737 (2004).
[CrossRef]

Fadeeva, E.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

Fiedler, J.

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

Fleury, P. A.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Gakovic, B.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Gnther, K. P.

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

Grolleau, B.

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

Guo, C.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
[CrossRef] [PubMed]

Hao, L.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Hirt, H. P.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Hur, G.

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

Hure, G.

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

Ilday, F. Ö.

H. Kalaycioglu, B. Oktem, C. Senel, P. P. Paltani, and F. Ö. Ilday, “Micro joule-energy, 1 MHz-repetition rate pulses from an all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
[CrossRef] [PubMed]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Jayaraman, M.

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

Joos, U.

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

Kalaycioglu, H.

Kathuria, Y. P.

Y. P. Kathuria, “Laser microprocessing of metallic stent for medical therapy,” J. Mater. Process. Technol. 170(3), 545–550 (2005).
[CrossRef]

Kessler, S.

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

Koch, J.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

Lawrence, J.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Lazare, S.

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Lelkes, P. I.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

Lesourd, M.

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

Lim, G. C.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Lu, B.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Ma, G. H.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Ma, H. L.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Mai, T. N.

D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
[CrossRef] [PubMed]

Mayr-Wohlfart, U.

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

Mercier, L.

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

Meyer, U.

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

Momma, C.

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

Moser, S.

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

Myers, R. R.

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

Nolte, L.-P.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Nolte, S.

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

Nydegger, T.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Oktem, B.

Oxland, T.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Özgören, K.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

Paltani, P. P.

Panjan, P.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Park, J. B.

J. B. Park, The Biomedical Engineering Handbook: Second Edition , Joseph D. Bronzino, ed. (CRC Press LLC, 2000), Vol. II.

Phua, Y. F.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Porto, S. P. S.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Puhl, W.

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

Radak, B.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Renninger, W.

Rethfeld, B.

S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997).
[CrossRef]

Rouais, F.

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Rouxhet, P. G.

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

Rydevik, B.

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

Schenk, R. K.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Schlie, S.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

Senel, C.

Sherwood, R. L.

D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
[CrossRef] [PubMed]

Snetivy, D.

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

Sullivan, D. Y.

D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
[CrossRef] [PubMed]

Toworfe, G. K.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

Trtica, M.

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

Tunnermann, A.

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

Uttayarat, P.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

van den Bosh de Aguilar, P.

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

Vorobyev, A. Y.

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
[CrossRef] [PubMed]

Weisbuch, F.

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Weman, K.

K. Weman, Welding Processes Handbook (CRC Press LLC, 2003).

Wiesmann, H. P.

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

Wise, F. W.

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Yang, J. Y.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Zhang, Y. B.

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

Zheng, H. Y.

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

Appl. Surf. Sci. (4)

C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultra-short pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[CrossRef]

M. Trtica, B. Gakovic, D. Batani, T. Desai, P. Panjan, and B. Radak, “Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm,” Appl. Surf. Sci. 253, 2551–2556 (2006).
[CrossRef]

H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, “Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser,” Appl. Surf. Sci. 253, 7497–7500 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[CrossRef]

Biomaterials (3)

J. A. Alaerts, V. M. De Cupere, S. Moser, P. van den Bosh de Aguilar, and P. G. Rouxhet, “Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells,” Biomaterials 22(12), 1635–1642 (2001).
[CrossRef] [PubMed]

M. Jayaraman, U. Meyer, M. Bhner, U. Joos, and H. P. Wiesmann, “Influence of titanium surfaces on attachment of osteoblast-like cells in vitro,” Biomaterials 25(4), 625–631 (2004).
[CrossRef]

K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials 21, 667–681 (2000).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

A. C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, and Ch. Baquey, “Laser microfabricated model surfaces for controlled cell growth,” Biosens. Bioelectron. 17, 413–426 (2002).
[CrossRef] [PubMed]

Calcif. Tissue Int. (2)

I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64, 499–507 (1999).
[CrossRef] [PubMed]

I. Degasne, M. F. Basl, V. Demais, G. Hur, M. Lesourd, B. Grolleau, L. Mercier, and D. Chappard, “Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces,” Calcif. Tissue Int. 64(6), 499–507(1999).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[CrossRef]

J. Biomed. Mater. Res. (3)

U. Mayr-Wohlfart, J. Fiedler, K. P. Gnther, W. Puhl, and S. Kessler, “Proliferation and differentiation rates of a human osteoblast-like cell line (SaOS-2) in contact with different bone substitute materials,” J. Biomed. Mater. Res. 57(1), 132–139.(2001).
[CrossRef] [PubMed]

D. Buser, T. Nydegger, T. Oxland, D. L. Cochran, R. K. Schenk, H. P. Hirt, D. Snetivy, and L.-P. Nolte, “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” J. Biomed. Mater. Res. 45(2), 75–83 (1999).
[CrossRef] [PubMed]

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. 75A, 668–680 (2005).
[CrossRef]

J. Biomed. Mater. Res., Part B: Appl. Biomater. (1)

L. Hao, J. Lawrence, Y. F. Phua, K. S. Chian, G. C. Lim, and H. Y. Zheng, “Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 73B, 146–156 (2005).
[CrossRef]

J. Mater. Process. Technol. (1)

Y. P. Kathuria, “Laser microprocessing of metallic stent for medical therapy,” J. Mater. Process. Technol. 170(3), 545–550 (2005).
[CrossRef]

J. Prosthet. Dent. (1)

D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” J. Prosthet. Dent. 78(4), 379–386 (1997).
[CrossRef] [PubMed]

J. Rehabil. Res. Dev. (1)

R. Branemark, P-I Branemark, B. Rydevik, and R. R. Myers, “Osseointegration in skeletal reconstruction and rehabilitation: a review,” J. Rehabil. Res. Dev. 38(2), 175–181 (2000).

J. Tribol. (1)

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127, 248–253 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, Zn F2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Y. Vorobyev and C. Guo, “Femtosecond laser surface structuring of biocompatible metals,” Proc. SPIE 7203, 720321 (2009).

S. I. Anisimov and B. Rethfeld, “Theory of ultrashort laser pulse interaction with a metal,” Proc. SPIE 3093, 192–203 (1997).
[CrossRef]

Tribol. Lett. (1)

I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” Tribol. Lett. 17, 733–737 (2004).
[CrossRef]

Other (3)

J. B. Park, The Biomedical Engineering Handbook: Second Edition , Joseph D. Bronzino, ed. (CRC Press LLC, 2000), Vol. II.

K. Weman, Welding Processes Handbook (CRC Press LLC, 2003).

E. Fadeeva, S. Schlie, J. Koch, B. N. Chichkov, A. Y. Vorobyev, and C. Guo, “Femtosecond laser-induced surface structures on platinum and their effects on surface wettability and fibroblast cell proliferation,” in Contact Angle, Wettability and Adhesion (Koninklijke Brill NV, 2009), pp. 163–171.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the femtosecond all-fiber-integrated Yb amplifier and the material processing set-up, BS: beam splitter, AOM: acousto-optic modulator, LMA: large mode area, DC: double-clad.

Fig. 2
Fig. 2

Scanning electron microscope (SEM) images of three different commercial and one fiber laser-textured Ti disks that are subsequently used in cell attachment and proliferation assays. (a) Acid etched, (b) sand-blasted, (c) SLA and (d) fiber laser textured using the second laser system operating at 1 MHz with 1 W of average power, and 80 ps of pulse duration.

Fig. 3
Fig. 3

Surface textures obtained using femtosecond pulses. Optical (a) and atomic force (b) microscope images of the nanometer-scale surface textures at low fluence. (c, d) SEM images of the micron-scale surface texturing created at high fluences.

Fig. 4
Fig. 4

SEM images of the micron-scale surface textures with dotted (a) and line-scan (b, c, d) structures formed with picosecond pulses.

Fig. 5
Fig. 5

SEM images of the micron-scale surface textures with dotted (a) and line (b) structures formed with nanosecond pulses.

Fig. 6
Fig. 6

EDX analysis of the Ti samples: the irradiated regions are (a) femtosecond, (b) picosecond, (c) nanosecond, and (d) unexposed region. The data lines are vertically displaced for clarity.

Fig. 7
Fig. 7

Raman spectra of Ti samples: the irradiated regions by (a) femtosecond, (b) picosecond, (c) nanosecond pulses from the fiber lasers, and (d) unexposed region.

Fig. 8
Fig. 8

Cell counts for analyzing attachment and proliferation after 36 hours (left) and 7 days (right). p values indicate the significance of experimental values obtained from commercial surfaces and picosecond laser treated surfaces according to two tailed t-test. AE: surfaces prepared using acid-etching; SB: surfaces prepared using sandblasting; SLA: surfaces prepared using the SLA method; Pico: surfaces prepared using the picosecond laser.

Fig. 9
Fig. 9

(a) SEM image of osteosarcoma cells attached to a fiber laser textured Ti surface. The two red arrows indicate the cells aligned with linear features. (b) Fluorescent image of the same sample, where the cells are stained with DAPI and Mitotracker Red 580. The laser-textured area between the dashed (yellow) lines shows a general tendency of the cell population to align along the direction of the arrowheads.

Metrics