Abstract

We demonstrate a high-resolution high-extinction parallel spectrometer for Brillouin spectroscopy of turbid samples. Cascading multiple VIPA etalons in the cross-axis configuration allowed us to achieve a high extinction ratio of up to 80 dB with sub-GHz resolution. Using a three-stage VIPA, we obtained the Brillouin spectra from Intralipid solutions at concentrations up to 10%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
    [CrossRef]
  2. K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
    [CrossRef]
  3. E. W. Eloranta, “High spectral resolution Lidar in “Lidar: range-resolved optical remote sensing of the atmosphere”,” in Springer Series in Optical Sciences, K. Weitkamp, ed. (Springer-Verlag, New York, 2005).
  4. H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
    [CrossRef]
  5. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [CrossRef] [PubMed]
  6. T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
    [CrossRef] [PubMed]
  7. P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
    [CrossRef]
  8. T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
    [CrossRef]
  9. J. R. Sandercock, “Some recent developments in Brillouin scattering,” RCA Rev. 36, 89–107 (1975).
  10. G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
    [CrossRef] [PubMed]
  11. P. Jacquinot, “The luminosity of spectrometers with prisms gratings or Fabry-Perot etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
    [CrossRef]
  12. H. Z. Cummins and R. W. Gammon, “Rayleigh and Brillouin scattering in liquids – Landau–Placzek ratio,” J. Chem. Phys. 44, 2785–2796 (1966).
    [CrossRef]
  13. A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42(20), 4152–4155 (2003).
    [CrossRef] [PubMed]
  14. S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [CrossRef]
  15. K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
    [CrossRef]
  16. E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
    [CrossRef] [PubMed]
  17. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
    [CrossRef]

2008 (2)

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[CrossRef] [PubMed]

2005 (2)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

2004 (2)

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

2003 (1)

2002 (1)

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

1996 (1)

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

1994 (1)

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

1993 (1)

T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
[CrossRef]

1986 (1)

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef] [PubMed]

1975 (1)

J. R. Sandercock, “Some recent developments in Brillouin scattering,” RCA Rev. 36, 89–107 (1975).

1966 (1)

H. Z. Cummins and R. W. Gammon, “Rayleigh and Brillouin scattering in liquids – Landau–Placzek ratio,” J. Chem. Phys. 44, 2785–2796 (1966).
[CrossRef]

1954 (1)

Benassi, P.

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

Boukenter, A.

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef] [PubMed]

Carroll, J. E.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Champagnon, B.

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef] [PubMed]

Culshaw, B.

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins and R. W. Gammon, “Rayleigh and Brillouin scattering in liquids – Landau–Placzek ratio,” J. Chem. Phys. 44, 2785–2796 (1966).
[CrossRef]

Duval, E.

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef] [PubMed]

Eramo, R.

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

Fytas, G.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Gammon, R. W.

H. Z. Cummins and R. W. Gammon, “Rayleigh and Brillouin scattering in liquids – Landau–Placzek ratio,” J. Chem. Phys. 44, 2785–2796 (1966).
[CrossRef]

Gardiner, P.

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

Giugni, A.

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

Hellmann, G. P.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Hochheimer, H. D.

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

Jacquinot, P.

Jonas, U.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Kim, P.

Koski, K. J.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

Kuok, M. H.

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

Lim, H. S.

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

Lin, C.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42(20), 4152–4155 (2003).
[CrossRef] [PubMed]

Marcenac, D. D.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Matsuoka, T.

T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
[CrossRef]

McGown, A.

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

Michie, C.

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

Muller, J.

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

Nardone, M.

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

Ng, S. C.

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

Nowell, M. C.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Plumb, R. G. S.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Retsch, M.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Sainidou, R.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Sakai, K.

T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
[CrossRef]

Sampoli, M.

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

Sandercock, J. R.

J. R. Sandercock, “Some recent developments in Brillouin scattering,” RCA Rev. 36, 89–107 (1975).

Scarcelli, G.

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[CrossRef] [PubMed]

Spahn, P.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Still, T.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Takagi, K.

T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
[CrossRef]

Vega, A.

Wang, Z. K.

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

Weiner, A. M.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized grating equation for virtually-imaged phased-array spectral dispersers,” Appl. Opt. 42(20), 4152–4155 (2003).
[CrossRef] [PubMed]

Xiao, S. J.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Yarger, J. L.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

Yu, S. F.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Yun, S. H.

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[CrossRef] [PubMed]

Zhang, L. M.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 061903 (2005).
[CrossRef]

H. S. Lim, M. H. Kuok, S. C. Ng, and Z. K. Wang, “Brillouin observation of bulk and confined acoustic waves in silica microspheres,” Appl. Phys. Lett. 84(21), 4182–4184 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

J. Chem. Phys. (1)

H. Z. Cummins and R. W. Gammon, “Rayleigh and Brillouin scattering in liquids – Landau–Placzek ratio,” J. Chem. Phys. 44, 2785–2796 (1966).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef] [PubMed]

Proc. IEEE (1)

B. Culshaw, C. Michie, P. Gardiner, and A. McGown, “Smart structures and applications in civil engineering,” Proc. IEEE 84(1), 78–86 (1996).
[CrossRef]

RCA Rev. (1)

J. R. Sandercock, “Some recent developments in Brillouin scattering,” RCA Rev. 36, 89–107 (1975).

Rev. Sci. Instrum. (3)

P. Benassi, R. Eramo, A. Giugni, M. Nardone, and M. Sampoli, “A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet,” Rev. Sci. Instrum. 76(1), 013904 (2005).
[CrossRef]

T. Matsuoka, K. Sakai, and K. Takagi, “Hyper-resolution Brillouin–Rayleigh spectroscopy with an optical beating technique,” Rev. Sci. Instrum. 64(8), 2136–2139 (1993).
[CrossRef]

K. J. Koski, J. Muller, H. D. Hochheimer, and J. L. Yarger, “High pressure angle-dispersive Brillouin spectroscopy: A technique for determining acoustic velocities and attenuations in liquids and solids,” Rev. Sci. Instrum. 73(3), 1235–1241 (2002).
[CrossRef]

Other (1)

E. W. Eloranta, “High spectral resolution Lidar in “Lidar: range-resolved optical remote sensing of the atmosphere”,” in Springer Series in Optical Sciences, K. Weitkamp, ed. (Springer-Verlag, New York, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Confocal Brillouin spectroscopy setup used in all experiments. (b) Schematic of a single-stage VIPA spectrometer, consisting of a cylindrical lens (C1), a VIPA etalon, a spherical lens (S1f) and a CCD camera. (c) Brillouin spectrum obtained from Toluene sample (10 mW, 1 sec). The spectrum in each diffraction order of the etalon shows a triplet comprising Rayleigh, Brillouin Stokes and anti-Stokes peaks.

Fig. 2
Fig. 2

Illustration of the principle of multiple VIPA cascading. (a) In a single stage, Brillouin signal and crosstalk overlap. (b) In a double spectrometer, the spectral axis is diagonal, while crosstalk is confined to horizontal and vertical directions. (c) A mask between first and second stages can filter out part of the crosstalk component. (d) A second mask between second and third etalon further reduces the crosstalk component.

Fig. 3
Fig. 3

(a) Schematic of a two-stage VIPA spectrometer. In between stages a mask and a relay spherical lens are inserted. (b) Brillouin spectrum of methanol sample (10 mW, 1 sec), obtained with the spectrometer. For illustration purpose only, we drew a line (dashed, yellow) to indicate the spectral dispersion axis of the double-stage spectrometer and a square (dotted, orange) to show the vertical and horizontal axes. (c) Brillouin spectrum of a 0.01% Intralipid solution measured at 7 mW and integration time of 1 sec. The vertical mask cut off the stray light in the horizontal axis, but strong residues are seen as saturated vertical lines.

Fig. 4
Fig. 4

(a) Experimental setup of a three-stage VIPA spectrometer. (b) Brillouin spectrum of an Intralipid solution (0.1%) sample (21 mW, 1 sec). Only Stokes and anti-Stokes peaks from adjacent diffraction orders are shown after filtering by the masks. (c) Brillouin spectrum of Plexiglass sample (21 mW, 1 sec).

Fig. 5
Fig. 5

Illustration of the relationship between the orientation of the VIPA etalon and dispersion axis at each stage. (a) In a single stage, the orientation of the VIPA etalon (v1) and spectral dispersion axis (d1) coincide. (b) In a two-stage spectrometer, the second etalon axis (v2) is perpendicular to d1, and the overall spectral dispersion is diagonal (d2). (c) In a three-stage spectrometer, the third etalon axis (v3) is perpendicular to the d2.

Fig. 6
Fig. 6

Spectral response of a single- (gray), double- (red), and triple- (green) spectrometer to the single laser line at 532 nm. The normalized background signal shows improvement in spectral contrast from 30 dB (single-stage) to 55 dB (two-stage) and 80 dB (three-stage).

Fig. 7
Fig. 7

(a) Background elastic scattering from Intralipid solution, measured by the two-stage (red) and three-stage (green) spectrometer at 7.5 GHz as a function of Intralipid concentration. (b) Brillouin signal to background ratio (SBR) as a function of Intralipid concentration for two-stage (red) vs three-stage (green) spectrometer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s k = ϕ k f k .
s k = s k * M N * M N 1 * * M k + 1 .
S N = 1 N s k 2 ,
ψ k + 1 ψ k = tan 1 ( s k + 1 / S k ) tan 1 ( 1 / k ) ,
θ k + 1 θ k = tan 1 ( s k / S k 1 ) tan 1 ( 1 / k 1 ) ,
C ( 4 F 2 / π 2 ) N .

Metrics