Abstract

We have recently shown circular polarizers with the homo-structured double-helical metamaterials, which have broader operation bands than those of the single-helical structures [Opt. Lett. 35, 2588 (2010)]. However, trying to get more operation bands deteriorates the extinction ratio. In this paper, we proposed circular polarizers with hetero-structured double-helical metamaterials. The extinction ratios of these circular polarizers are two times higher than those with homo-structured double-helical metamaterials. Furthermore, we qualitatively explained the phenomenon of the higher extinction ratio from the viewpoint of the interaction between the two helix-wires in a double-helical unit.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [CrossRef]
  2. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [CrossRef] [PubMed]
  3. Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
    [CrossRef] [PubMed]
  4. J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [CrossRef]
  5. Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [CrossRef]
  6. H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
    [CrossRef]
  7. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  8. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [CrossRef] [PubMed]
  11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
    [CrossRef] [PubMed]
  12. Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  14. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  15. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
    [CrossRef]
  16. J. D. Kraus and R. J. Marhefka, “The helical antenna: axial and other modes, Part II,” in Antennas: For All Applications, 3rd ed. (McGraw-Hill, 2003), pp. 251–258.
  17. Z. Yang, M. Zhao, and P. Lu, “Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials,” Opt. Express 19(5), 4255–4260 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (7)

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[CrossRef] [PubMed]

Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
[CrossRef] [PubMed]

Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[CrossRef]

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

2009 (3)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

1998 (1)

1994 (2)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Alici, K. B.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Baev, A.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Burger, S.

Caglayan, H.

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Colak, E.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

Decker, M.

Djurisic, A. B.

Dong, J. F.

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Elazar, J. M.

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Harms, P.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

He, S. L.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[CrossRef]

Jee, H. S.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Kafesaki, M.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Klein, M. W.

Ko, W.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Koschny, T.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Kriegler, C. E.

Kwon, D. H.

Li, Z. F.

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Linden, S.

Liu, S.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Lu, P.

Lu, P. X.

Lu, Y. F.

Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
[CrossRef] [PubMed]

Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).

Majewski, M. L.

Mittra, R.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Oh, H. S.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Ozbay, E.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

Prasad, P. N.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Rakic, A. D.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Swihart, M. T.

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, B. N.

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Wegener, M.

Werner, D. H.

Werner, P. L.

Yang, Z.

Yang, Z. Y.

Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
[CrossRef] [PubMed]

Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).

Ye, Y. Q.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[CrossRef]

Zhao, M.

Zhao, R.

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Zhou, J.

Zhou, J. F.

Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010).
[CrossRef] [PubMed]

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[CrossRef]

Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Other (1)

J. D. Kraus and R. J. Marhefka, “The helical antenna: axial and other modes, Part II,” in Antennas: For All Applications, 3rd ed. (McGraw-Hill, 2003), pp. 251–258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagrams of the hetero- and homo-structured helical optical circular polarizers.

Fig. 2
Fig. 2

Optical performances of the homo and hetero-structured double-helical circular polarizers.

Fig. 3
Fig. 3

Difference between the homo- and hetero-structured double-helical circular polarizers. F1, F2: interaction force; I1, I2: current magnitude of the helix-wires; CP: current’s path; OW: outer wall of the helix; IW: inner wall of the helix.

Fig. 4
Fig. 4

Optical performances of Al-Pt hetero-structured double-helical polarizers with different number of helix-period.

Fig. 5
Fig. 5

Optical performances of hetero-structured double-helical polarizers with different length of helix-period.

Fig. 6
Fig. 6

Optical performances of hetero-structured double-helical polarizers with ideal parameters.

Tables (5)

Tables Icon

Table 1 Definitions of the Double-Helical Circular Polarizer’s Performance Parameters a

Tables Icon

Table 2 Optical Performances of the Homo and Hetero-Structured Double-Helical Circular Polarizers a

Tables Icon

Table 3 The Equivalent Resistivity of the Double-Helical Optical Circular Polarizers

Tables Icon

Table 4 Optical Performances of Al-Pt Hetero-Structured Double-Helical Polarizers with Different Number of Helix-Period a

Tables Icon

Table 5 Optical Performances of Al-Pt Hetero-Structured Double-Helical Polarizers with Different Length of Helix-Period a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ = ρ 1 ρ 2 ρ 1 + ρ 2

Metrics