Abstract

We demonstrate broadband optical quenching of photoconductivity in CdSe single nanowires with low excitation power. Using 1550-nm-wavelength light with 10-nW power for waveguiding excitation, we observe a typical responsivity of 0.5 A/W for quenching the photoconductivity established by 10-µW 660-nm-wavelength background light in a 403-nm-diameter CdSe nanowire, with detectable limit of the quenching power down to pW level at room temperature, which is several orders of magnitude lower than those reported previously. This large quenching effect originates from the enhanced light-defect interaction in the nanowires via waveguiding excitation. These results open new opportunities for noninvasive characterization of deep-level defect states in low-dimensional semiconductor nanomaterials, and novel optoelectronic applications of semiconductor nanowires such as high-sensitive broadband photodetection.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
    [CrossRef]
  2. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  3. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
    [CrossRef]
  4. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
    [CrossRef] [PubMed]
  5. D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
    [CrossRef]
  6. R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, 1992).
  7. R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99(4), 1105–1116 (1955).
    [CrossRef]
  8. L. Grabner, “Optical quenching of photoconductivity near the band edge in CdS,” Phys. Rev. Lett. 14(14), 551–554 (1965).
    [CrossRef]
  9. L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960).
    [CrossRef]
  10. Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
    [CrossRef]
  11. T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
    [CrossRef]
  12. S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
    [CrossRef]
  13. W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
    [CrossRef]
  14. Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  16. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
    [CrossRef]
  17. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
    [CrossRef] [PubMed]
  18. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [CrossRef] [PubMed]
  19. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
    [CrossRef]
  20. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
    [CrossRef] [PubMed]
  21. Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
    [CrossRef]
  22. D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
    [CrossRef]
  23. D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
    [CrossRef]
  24. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  25. F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009).
    [CrossRef] [PubMed]
  26. F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
    [CrossRef] [PubMed]
  27. C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005).
    [CrossRef]
  28. G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
    [CrossRef]
  29. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  30. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
    [CrossRef] [PubMed]
  31. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999).
    [CrossRef]

2010 (4)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

2009 (4)

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009).
[CrossRef] [PubMed]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

2008 (4)

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
[CrossRef]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

2006 (2)

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

2005 (1)

C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005).
[CrossRef]

2004 (3)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

2003 (1)

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

2002 (1)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

2000 (1)

T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
[CrossRef]

1999 (1)

1997 (1)

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

1965 (1)

L. Grabner, “Optical quenching of photoconductivity near the band edge in CdS,” Phys. Rev. Lett. 14(14), 551–554 (1965).
[CrossRef]

1960 (1)

L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960).
[CrossRef]

1955 (1)

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99(4), 1105–1116 (1955).
[CrossRef]

Abouraddy, A. F.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Anedda, A.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Bao, X. Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Bello, I.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Bube, R. H.

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99(4), 1105–1116 (1955).
[CrossRef]

Bures, J.

Cai, S.

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

Chen, J. C.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Chen, Y. F.

T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
[CrossRef]

Dai, G. Z.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Danto, S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Dell, J. M.

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

Deng, D. S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Fan, X.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Fang, X. S.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Fink, Y.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Galantai, G.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Ghosh, R.

Golberg, D.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Grabner, L.

L. Grabner, “Optical quenching of photoconductivity near the band edge in CdS,” Phys. Rev. Lett. 14(14), 551–554 (1965).
[CrossRef]

Gu, F. X.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009).
[CrossRef] [PubMed]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

He, Z.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Hou, Q.-F.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Huang, Z. C.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Hubbard, S.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Jena, D.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Jiang, Y.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jie, J.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Jie, J. S.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Johnson, L.

L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960).
[CrossRef]

Kim, H.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Kind, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Kuno, M.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Lee, S. T.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Lee, S.-T.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Letant, S. E.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
[CrossRef]

Levinstein, H.

L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960).
[CrossRef]

Li, J.-M.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Li, X.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Liao, M. Y.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Lin, T. Y.

T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
[CrossRef]

Lo, Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Lou, J. Y.

Luo, L.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Ma, C.

C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005).
[CrossRef]

Mazur, E.

Meng, X. M.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Messer, B.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Mott, D. B.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Nener, B. D.

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

Orf, N. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Pan, A. L.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Parish, G.

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Pavlidis, D.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Peng, Z. W.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Protasenko, V.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Ratto, T. V.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
[CrossRef]

Ricci, P. C.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Shu, P. K.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Singh, A.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Sirbuly, D. J.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Soci, C.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Stolyarov, A. M.

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Stone, H. A.

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Tiginyanu, I. M.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Tong, L. M.

Umana-Membreno, G. A.

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

Ursaki, W.

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

Wan, Q.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Wang, C.-M.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Wang, D. L.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Wang, P.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009).
[CrossRef] [PubMed]

Wang, X.-L.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Wang, Z. L.

C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005).
[CrossRef]

Wickenden, D. K.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Xia, M. X.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Xiao, H.-L.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Xing, H. G.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

Xu, X. J.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Yan, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yang, C.-B.

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

Yang, H. C.

T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
[CrossRef]

Yang, P.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Yang, Z. Y.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yin, X. F.

Yoshio, B.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Yu, H. K.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009).
[CrossRef] [PubMed]

Yuan, G.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Zeng, H. B.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Zhai, T. Y.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Zhang, A.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Zhang, L.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zhang, Q. L.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Zhang, R.

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

Zhang, W.

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Zhang, W. J.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Zhou, W. C.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Zou, B. S.

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

ACS Nano (1)

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005).
[CrossRef]

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[CrossRef]

Chin. Phys. Lett. (1)

Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010).
[CrossRef]

J. Appl. Phys. (4)

Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997).
[CrossRef]

T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000).
[CrossRef]

S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004).
[CrossRef]

W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008).
[CrossRef]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006).
[CrossRef]

Nano Lett. (5)

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007).
[CrossRef] [PubMed]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. (2)

L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960).
[CrossRef]

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99(4), 1105–1116 (1955).
[CrossRef]

Phys. Rev. Lett. (1)

L. Grabner, “Optical quenching of photoconductivity near the band edge in CdS,” Phys. Rev. Lett. 14(14), 551–554 (1965).
[CrossRef]

Science (1)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009).
[CrossRef]

Small (1)

Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image of a 450-nm-diameter CdSe nanowire. (b) Optical micrograph of a PL emission of a 290-nm-diameter CdSe nanowire. (c) PL spectrum of the 290-nm-diameter CdSe nanowire.

Fig. 2
Fig. 2

(a) Schematic diagram of waveguiding excitation approach for investigation of the quenching effect in a single nanowire. (b) Optical micrograph of a 403-nm-diameter nanowire guiding 660-nm light.

Fig. 3
Fig. 3

Infrared quenching of photoconductivity in a 403-nm-diameter CdSe nanowire. (a) I b established by 660-nm light at constant P in of 10 μW (illustrated in the top inset) and quenched upon the presence of 1550-nm signal light (illustrated in the bottom inset). (b) Temporal response of the CdSe nanowire under 660-nm pulsed excitation and 1550-nm excitation.

Fig. 4
Fig. 4

Schematic energy diagrams of the quench effect in CdSe nanowires. Left: background states under the nanowire excited with 660-nm above-bandgap light; right: quenching occurs upon the presence of the 1550-nm light.

Fig. 5
Fig. 5

Quenched current (ΔI) versus P in at wavelengths of 808, 980, 1064 and 1550 nm, respectively. Inset, wavelength-dependent quenching factors (Q) with P in = 1 µW.

Metrics