Abstract

We present a synchronously pumped diamond Raman laser operating at 275.7 nm pumped by the 4th harmonic of a mode locked Nd:YVO4 laser. The laser had a threshold pump pulse energy of 5.8 nJ and generated up to 0.96 nJ pulses at 10.3% conversion efficiency. The results agree well with a numerical model that includes two-photon absorption of the pump and Stokes beams and uses a Raman gain coefficient of diamond of 100 cm/GW. We also report on the observation of nanometer scale two-photon assisted etching of the diamond crystal surfaces.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
    [CrossRef]
  2. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  3. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
    [CrossRef] [PubMed]
  4. D. W. Coutts and A. J. S. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
    [CrossRef]
  5. E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34(11), 1660–1662 (2009).
    [CrossRef] [PubMed]
  6. M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron. 13(3), 679–691 (2007).
    [CrossRef]
  7. R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32(7), 814–816 (2007).
    [CrossRef] [PubMed]
  8. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  9. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
    [CrossRef]
  10. J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
    [CrossRef] [PubMed]
  11. A. Zunger, “Practical doping principles,” Appl. Phys. Lett. 83(1), 57–59 (2003).
    [CrossRef]
  12. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [CrossRef]
  13. V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
    [CrossRef]
  14. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [CrossRef]
  15. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
    [CrossRef] [PubMed]
  16. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [CrossRef] [PubMed]
  17. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18(16), 16765–16770 (2010).
    [CrossRef] [PubMed]
  18. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
    [CrossRef] [PubMed]
  19. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [CrossRef] [PubMed]
  20. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  21. E. Granados and D. J. Spence, “Pulse compression in synchronously pumped mode locked Raman lasers,” Opt. Express 18(19), 20422–20427 (2010).
    [CrossRef] [PubMed]
  22. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499–501 (1991).
    [CrossRef] [PubMed]
  23. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
    [CrossRef]
  24. F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
    [CrossRef]
  25. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
    [CrossRef]
  26. V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
    [CrossRef]
  27. H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002).
    [CrossRef]
  28. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
    [CrossRef]
  29. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [CrossRef] [PubMed]
  30. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010).
    [CrossRef] [PubMed]

2010

2009

2008

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

2007

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron. 13(3), 679–691 (2007).
[CrossRef]

R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32(7), 814–816 (2007).
[CrossRef] [PubMed]

2005

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

2004

2003

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

A. Zunger, “Practical doping principles,” Appl. Phys. Lett. 83(1), 57–59 (2003).
[CrossRef]

2002

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002).
[CrossRef]

1999

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[CrossRef]

1995

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

1993

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

1991

Anthony, T. R.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[CrossRef]

Banholzer, W. F.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Basiev, T.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Basiev, T. T.

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

Bonner, G. M.

Burns, D.

Bus'ko, D.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Butler, J. E.

Cerny, P.

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

Chulkov, R.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Convery, M.

Coutts, D. W.

E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34(11), 1660–1662 (2009).
[CrossRef] [PubMed]

D. W. Coutts and A. J. S. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[CrossRef]

Dadap, J. I.

Dawson, M. D.

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Downer, M. C.

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron. 13(3), 679–691 (2007).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Esposito, E.

Focht, G. B.

Gamaly, E. G.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Garcia, M. E.

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002).
[CrossRef]

Grabtchikov, A.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Grabtchikov, A. S.

Granados, E.

Hastie, J. E.

Hemley, R. J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Jaksch, D.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Jelinkova, H.

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

Jeschke, H. O.

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Kemp, A. J.

Kiefer, W.

Komlenok, M. S.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Kononenko, V. V.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Konov, V. I.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Lai, J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Lee, K. C.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Lee, K. H.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Lisinetskii, V.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Lisinetskii, V. A.

Lorenz, V. O.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Lubeigt, W.

Luther-Davies, B.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Madsen, N. R.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Maksimenka, R.

Mao, H. K.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

McConnell, G.

McGonigle, A. J. S.

D. W. Coutts and A. J. S. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[CrossRef]

McKay, T.

Mildren, R. P.

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[CrossRef]

Nunn, J.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Ogilvy, H.

Olivero, P.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Olson, J. R.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Orlovich, V.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Orlovich, V. A.

Osiko, V. V.

Pask, H. M.

Pimenov, S. M.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Piper, J. A.

Pohl, R. O.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

Prawer, S.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

Rabeau, J. R.

Ralchenko, V. G.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Reitze, D. H.

Rhee, H.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Rode, A. V.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Rozhok, S.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Sabella, A.

Schmitt, M.

Sobol, A. A.

Spence, D. J.

Spizziri, P.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

Surmacz, K.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Sussman, B. J.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Vandersande, J. W.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Waldermann, F. C.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Walmsley, I. A.

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Yan, C. S.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Zoltan, A.

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Zunger, A.

A. Zunger, “Practical doping principles,” Appl. Phys. Lett. 83(1), 57–59 (2003).
[CrossRef]

Zverev, P.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

Zverev, P. G.

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995).
[CrossRef]

A. Zunger, “Practical doping principles,” Appl. Phys. Lett. 83(1), 57–59 (2003).
[CrossRef]

Appl. Surf. Sci.

H. O. Jeschke and M. E. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197-198, 107–113 (2002).
[CrossRef]

IEEE J. Quantum Electron.

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

D. W. Coutts and A. J. S. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron. 13(3), 679–691 (2007).
[CrossRef]

Laser Phys. Lett.

V. Lisinetskii, S. Rozhok, D. Bus'ko, R. Chulkov, A. Grabtchikov, V. Orlovich, T. Basiev, and P. Zverev, “Measurements of Raman gain coefficient for barium tungstate crystal,” Laser Phys. Lett. 2(8), 396–400 (2005).
[CrossRef]

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Opt. Eng.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[CrossRef]

Phys. Rev. B

F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78(15), 155201 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B Condens. Matter 47(22), 14850–14856 (1993).
[CrossRef] [PubMed]

Prog. Quantum Electron.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

Quantum Electron.

V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gain coefficients and short wavelength transmission ranges for diamond compared with other exemplary Raman materials [12,20]. The gain coefficient plotted for diamond at 266 nm is that determined in this study.

Fig. 2
Fig. 2

Experimental layout of the synchronously pumped diamond Raman laser operating at 275.7 nm.

Fig. 3
Fig. 3

Measured (squares) and simulated (line) laser output at 275.7 nm as a function pump pulse energy.

Fig. 4
Fig. 4

Interferometric optical profile image of the surface pit after exposure to 3.6x1010 pulses of energy 10 nJ. The cross-section through the deepest point is also shown.

Metrics