Abstract

To realize large effective area (Aeff) multi-core fibers (MCFs), the design to suppress the cross-talk and the influence of the cladding diameter on the micro bending loss were investigated. As a result, the MCFs with large Aeff over 100 μm2 and low micro bending loss were successfully fabricated. The results indicate the importance of fiber design to realize large Aeff MCFs including fiber diameters, which largely affect the micro bending loss property. Additionally, MCF with large Aeff, low attenuation loss and suppressed cross-talk was successfully realized by optimizing the fiber design. The cross-talk properties could be estimated by the simulation based on the coupling power theory taking the influences of the longitudinal fluctuation of core diameter into account.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1979-WB1
  2. M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
    [CrossRef]
  3. Y. Huo, P. K. Cheo, and G. G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,” Opt. Express 12(25), 6230–6239 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-25-6230 .
    [CrossRef] [PubMed]
  4. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Diffraction modeling of the multicore fiber amplifier,” J. Lightwave Technol. 25(10), 3072–3077 (2007).
    [CrossRef]
  5. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT Initiative’ towards 2020 and beyond,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FT4.
  6. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [CrossRef]
  7. K. Imamura, K. Mukasa, and T. Yagi, “Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission,” in Proceedings of Optical Fiber Communications Conference (2009), paper OTuC3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuC3
  8. C. Sethumadhavan, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proceedings of European Conference and Exhibition on Optical Communications (2009), paper PD2.6.
  9. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transoceanic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection,” in Proceedings of Optical Fiber Communications Conference (2009), paper PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB6
  10. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” in Proceedings of Optical Fiber Communications Conference (2010), paper OWK7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWK7
  11. K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
    [CrossRef]

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

2007 (1)

2004 (1)

2000 (1)

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

1997 (1)

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[CrossRef]

Bennion, I.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Blanchard, P. M.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Burnett, J. G.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Cheo, P. K.

Elkin, N. N.

Gander, M. J.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Greenaway, A. H.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Huo, Y.

Jones, J. D. C.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

King, G. G.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

MacPherson, W. N.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

McBride, R.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Nakajima, K.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[CrossRef]

Napartovich, A. P.

Ohashi, M.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[CrossRef]

Saitoh, K.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Tateda, M.

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[CrossRef]

Troshchieva, V. N.

Vysotsky, D. V.

Zhang, L.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Electron. Lett. (1)

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

J. Lightwave Technol. (2)

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Diffraction modeling of the multicore fiber amplifier,” J. Lightwave Technol. 25(10), 3072–3077 (2007).
[CrossRef]

K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution measurement along a single-mode optical fiber,” J. Lightwave Technol. 15(7), 1095–1101 (1997).
[CrossRef]

Opt. Express (1)

Other (6)

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT Initiative’ towards 2020 and beyond,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FT4.

K. Imamura, K. Mukasa, and T. Yagi, “Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission,” in Proceedings of Optical Fiber Communications Conference (2009), paper OTuC3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuC3

C. Sethumadhavan, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proceedings of European Conference and Exhibition on Optical Communications (2009), paper PD2.6.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transoceanic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection,” in Proceedings of Optical Fiber Communications Conference (2009), paper PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB6

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” in Proceedings of Optical Fiber Communications Conference (2010), paper OWK7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWK7

S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1979-WB1

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relationship between Aeff, macro bending loss and core pitch required to realize 100 km transmission with low cross-talk.

Fig. 2
Fig. 2

Cross-talk between neighboring cores (@ 1550 nm).

Fig. 3
Fig. 3

Cross section of designed fiber with air holes as markers.

Fig. 4
Fig. 4

Cross sections of fabricated fibers (a) Fiber #1: 141 μm, (b) Fiber #2: 215 μm.

Fig. 5
Fig. 5

Attenuation spectra of fabricated fibers (a) Fiber #1: 141 μm, (b) Fiber #2: 215 μm.

Fig. 6
Fig. 6

Definition of the normalized core numbers of MCFs.

Fig. 7
Fig. 7

Core pitch dependence of cross-talk after 100 km transmission and normalized core numbers.

Fig. 8
Fig. 8

Cross sections of Fiber #3.

Fig. 9
Fig. 9

Attenuation loss spectra of fabricated fibers (a) Fiber #2 (re-cited for comparison), (b) Fiber #3 and single core fiber with the same core diameter, cladding thickness and coating thickness with outer cores.

Fig. 10
Fig. 10

Fiber length dependence of cross-talk.

Fig. 11
Fig. 11

Longitudinal fluctuation of MFD @ 1550 nm (Fiber #3).

Fig. 12
Fig. 12

Fiber length dependence of cross-talk based on the coupled power theory taking the longitudinal fluctuation of core diameters into account (a) Fiber #1, (b) Fiber #2, (c) Fiber #3.

Tables (4)

Tables Icon

Table 1 Design Properties of Each Core

Tables Icon

Table 2 Optical Properties of Fiber #1 and Fiber #2 (@ 1550 nm)

Tables Icon

Table 3 Cross-Talk after 2 km Transmission

Tables Icon

Table 4 Optical Properties of Fiber #3 (@ 1550 nm)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n o r m a l i z e d c o r e n u m b e r s = N M C F S S M F S M C F

Metrics