Abstract

We demonstrate an approach to measure temporal correlations of photons in the near infrared range using frequency up-conversion. In this approach, the near infrared signal photons are converted into the visible range, in which highly efficient silicon avalanche photodiodes are used to perform the temporal correlation measurements. A coherent light source and a pseudo-thermal light source were used in the experiment. The results are in agreement with theoretical values and those obtained from measurements directly made using superconducting nanowire single photon detectors. We conclude that the temporal correlation (up to 4th order) of photons was preserved in the frequency up-conversion process. We further theoretically and experimentally studied the influence of the dark counts on the measurement. The setup uses commercially available components and achieves high total detection efficiency (~26%).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
  2. M. Fox, Quantum Optics, An Introduction (Oxford University Press, 2006).
  3. Y. Zhou, J. Liu, and Y. Shih, “Third order temporal correlation function of pseudo-thermal light,” arXiv: 0909.3512v1 [quant-ph] (2009).
  4. R. E. Meyers and K. S. Deacon, “Quantum ghost imaging experiments,” Proc. SPIE 7465, 746508 (2009).
  5. H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004).
    [PubMed]
  6. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
  7. E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).
  8. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
    [PubMed]
  9. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
    [PubMed]
  10. M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
    [PubMed]
  11. A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987).
    [PubMed]
  12. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
  13. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010).
    [PubMed]
  14. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [PubMed]
  15. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  16. M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [PubMed]
  17. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
    [PubMed]
  18. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).
  19. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).
  20. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007).
    [PubMed]
  21. H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
  22. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
    [PubMed]
  23. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express 17(16), 14395–14404 (2009).
    [PubMed]
  24. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
    [PubMed]
  25. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
    [PubMed]
  26. M. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
  27. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  28. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
  29. Datasheet of Perkin Elmer Single Photon Counting Module SPCM-AQR Series.
  30. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35(16), 2804–2806 (2010).
    [PubMed]
  31. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
    [PubMed]
  32. P. Voss, Y. Su, P. Kumar, and M. Vasilyev, “Photon statistics of a single mode of spontaneous Raman scattering in a distributed Raman amplifier,” Optical Fiber Communication Conference (IEEE, 2001), paper WDD23.
  33. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
  34. R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

2010 (3)

2009 (5)

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express 17(16), 14395–14404 (2009).
[PubMed]

R. E. Meyers and K. S. Deacon, “Quantum ghost imaging experiments,” Proc. SPIE 7465, 746508 (2009).

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).

2008 (2)

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
[PubMed]

2007 (3)

H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007).
[PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[PubMed]

2005 (2)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

2004 (3)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004).
[PubMed]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
[PubMed]

2002 (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

1999 (1)

1997 (1)

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

1992 (2)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[PubMed]

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

1990 (1)

1987 (1)

A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987).
[PubMed]

1985 (1)

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).

Albota, M. A.

Anant, V.

Aßmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Assmann, M.

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

Baek, B.

Bayer, M.

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Berggren, K. K.

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Bloch, J.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

Burt, E. A.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Byer, R.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

Cornell, E. A.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Dauler, E. A.

Deacon, K. S.

R. E. Meyers and K. S. Deacon, “Quantum ghost imaging experiments,” Proc. SPIE 7465, 746508 (2009).

Deng, H.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

Diamanti, E.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[PubMed]

Dong, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Durian, D. J.

Elson, E. L.

H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004).
[PubMed]

Fejer, M.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

Fejer, M. M.

Forchel, A.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Ghrist, R. W.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Gies, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Gol’tsman, G. N.

Hadfield, R.

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).

Hadfield, R. H.

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

Hamilton, S. A.

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).

Hershman, B.

Höfling, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Holland, M. J.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Honjo, T.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[PubMed]

Hvam, J. M.

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

Inoue, K.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

Jahnke, F.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Jundt, D.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Kerman, A. J.

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
[PubMed]

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Langrock, C.

Lemieux, P. A.

Li, Y.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).

Ma, L.

Magel, G.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

Meyers, R. E.

R. E. Meyers and K. S. Deacon, “Quantum ghost imaging experiments,” Proc. SPIE 7465, 746508 (2009).

Mink, A.

Mirin, R. P.

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010).
[PubMed]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

Molnar, R. J.

Mostowski, J.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

Myatt, C. J.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Nam, S. W.

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010).
[PubMed]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

Palmer, A. G.

A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987).
[PubMed]

Pan, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Pelc, J. S.

Qian, H.

H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004).
[PubMed]

Rakher, M.

M. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).

Raymer, M. G.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Reitzenstein, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Rosfjord, K. M.

Roussev, R. V.

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

Schneider, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Slattery, O.

M. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express 17(16), 14395–14404 (2009).
[PubMed]

Sobolewska, B.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

Srinivasan, K.

M. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).

Stevens, M. J.

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010).
[PubMed]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

Takesue, H.

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

Tang, X.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Thompson, N. L.

A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987).
[PubMed]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).

van der Poel, M.

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Veit, F.

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

Voronov, B. M.

Walmsley, I. A.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

Weihs, G.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

Wieman, C. E.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Wong, F. N.

Wu, E.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Xu, H.

Yamamoto, Y.

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).

Yang, J. K. W.

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Zeng, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Zhang, Q.

Appl. Phys. Lett. (1)

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-phton frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).

Biophys. J. (1)

A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987).
[PubMed]

IEEE J. Quantum Electron. (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).

J. Appl. Phys. (1)

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007).

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

J. Opt. Soc. Am. A (1)

N. J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 32 (2006).

Nat. Photonics (2)

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).

M. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).

Nature (2)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009).
[PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (3)

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. A 72(5), 052311 (2005).

Phys. Rev. Lett. (2)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[PubMed]

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79(3), 337–340 (1997).

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004).
[PubMed]

Proc. SPIE (1)

R. E. Meyers and K. S. Deacon, “Quantum ghost imaging experiments,” Proc. SPIE 7465, 746508 (2009).

Science (2)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[PubMed]

M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009).
[PubMed]

Other (5)

M. Fox, Quantum Optics, An Introduction (Oxford University Press, 2006).

Y. Zhou, J. Liu, and Y. Shih, “Third order temporal correlation function of pseudo-thermal light,” arXiv: 0909.3512v1 [quant-ph] (2009).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

P. Voss, Y. Su, P. Kumar, and M. Vasilyev, “Photon statistics of a single mode of spontaneous Raman scattering in a distributed Raman amplifier,” Optical Fiber Communication Conference (IEEE, 2001), paper WDD23.

Datasheet of Perkin Elmer Single Photon Counting Module SPCM-AQR Series.

Supplementary Material (1)

» Media 1: MPG (1092 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration. LD: Laser diode, EDFA: Erbium-doped fiber amplifier; WDM: Wavelength-division multiplexing coupler; PC: Polarization controller; PPLN: Periodically poled LiNbO3 waveguides; OL, Objective Lens; HWP: Half-wave plate; PBS: Polarizing beam-splitter; TCSPC: time-correlated single photon counting system.

Fig. 2
Fig. 2

g(2) measurement results of (a) coherent light source and (b) pseudo-thermal source.

Fig. 3
Fig. 3

g(3) measurement results of (a) coherent light source and (b) pseudo-thermal source.

Fig. 4
Fig. 4

Fourth-order temporal measurement results. (a) Coherent light g(4) data, at τ 3 = 0 μ s , (b)–(d): Pseudo-thermal source g(4) data at τ 3 = 25 μ s (b), τ 3 = 0 μ s (c), and τ 3 = 25 μ s (d). (b)–(d) are three frames of a movie showing g ( 4 ) ( τ 1 , τ 2 , τ 3 ) (see Media 1).

Fig. 5
Fig. 5

Calculated and measured g(2)(0), g(3)(0,0) and g(4) (0,0,0) values as function of the ratio between signal count rate to dark count rate.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = a ^ ( t ) a ^ ( t + τ ) a ^ ( t + τ ) a ^ ( t ) a ^ ( t ) a ^ ( t ) 2 ,
g ( 3 ) ( τ 1 , τ 2 ) = a ^ ( t ) a ^ ( t + τ 1 ) a ^ ( t + τ 2 ) a ^ ( t + τ 2 ) a ^ ( t + τ 1 ) a ^ ( t ) a ^ ( t ) a ^ ( t ) 3 ,
g ( 4 ) ( τ 1 , τ 2 , τ 3 ) = a ^ ( t ) a ^ ( t + τ 1 ) a ^ ( t + τ 2 ) a ^ ( t + τ 3 ) a ^ ( t + τ 3 ) a ^ ( t + τ 2 ) a ^ ( t + τ 1 ) a ^ ( t ) a ^ ( t ) a ^ ( t ) 4 ,
F t h e r m a l ( n , μ s c ) = 1 μ s i g n a l + 1 ( μ s i g n a l μ s i g n a l + 1 ) n ,
F p o i s s ( n , μ d a r k ) = μ d a r k n n ! e μ d a r k ,
F m i x ( n , μ s i g n a l , μ d a r k ) = k = 0 n F t h e r m a l ( k , μ s i g n a l ) × F p o i s s ( n k , μ d a r k ) ,

Metrics