Abstract

We present the use of a liquid crystal spatial light modulator to correct for the refractive-index mismatch induced spherical aberration in a high refractive-index lithium niobate crystal when a low repetition rate amplified laser is used for the direct fabrication of three-dimensional micro-structures. By correcting the aberration based on experimentally determined values, we show that the size of written structures decreases dramatically, which allows the fabrication of high quality micro-structures such as three-dimensional photonic crystals. We demonstrate that, through the use of adaptive optics, the fabrication depth and the stopgap strength in the corresponding photonic crystals are increased by a factor of two to three.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
    [CrossRef]
  2. M. Gu, Advanced Optical Imaging Theory (Springer, 1999).
  3. G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87, 241107 (2005).
    [CrossRef]
  4. G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
    [CrossRef] [PubMed]
  5. S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
    [CrossRef]
  6. D. Day and M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
    [CrossRef]
  7. M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
    [CrossRef]
  8. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16, 5481–5492 (2008).
    [CrossRef] [PubMed]
  9. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010).
    [CrossRef] [PubMed]
  10. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006).
    [CrossRef] [PubMed]
  11. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
    [CrossRef]
  12. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
    [CrossRef] [PubMed]
  13. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21, 1785–1798 (2004).
    [CrossRef]

2010 (2)

2009 (2)

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
[CrossRef] [PubMed]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
[CrossRef]

2008 (1)

2006 (3)

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

2005 (1)

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87, 241107 (2005).
[CrossRef]

2004 (1)

1998 (1)

1995 (1)

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

Audouard, E.

Booker, G. R.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

Booth, M.

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
[CrossRef] [PubMed]

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Booth, M. J.

Day, D.

Deubel, M.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Gu, M.

Huot, N.

Jaque, D.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
[CrossRef]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
[CrossRef] [PubMed]

Jesacher, A.

John, S.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Kawata, Y.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Laczik, Z.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

Marshall, G. D.

Mauclair, C.

Mermillod-Blondin, A.

Miyata, S.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakabayashi, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakano, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Ozin, G. A.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Prez-Willard, F.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
[CrossRef]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
[CrossRef] [PubMed]

Schwertner, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Stallinga, S.

Stoian, R.

Török, P.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

Varga, P.

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

von Freymann, G.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Wegener, M.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Wilson, T.

Wong, S.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Zhou, G.

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17, 17970–17975 (2009).
[CrossRef] [PubMed]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
[CrossRef]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783–2785 (2006).
[CrossRef] [PubMed]

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87, 241107 (2005).
[CrossRef]

Adv. Mater. (2)

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21, 3526–3530 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87, 241107 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. B 12, 325–332 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

M. Gu, Advanced Optical Imaging Theory (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated focal intensity distribution when a plane wave is focused into depths of 0 μm, 7.5 μm and 15 μm in LiNbO3 without compensation of the refractive-index mismatch aberration. (b) Comparison of the intensity along the axial direction in (a). (c) Intensity along the axial direction in (a) when the aberration is compensated.

Fig. 2
Fig. 2

Experimental set-up used for DLW with a SLM. The insets show a typical image of a plane in a fabricated PhC (left) and the focusing conditions within the fabrication medium when n 2 > n 1 (right).

Fig. 3
Fig. 3

(a) Phase pattern displayed on the SLM with (top) and without (bottom) inclusion of the defocus. (b) Plot of the measured fabrication threshold energy for the uncompensated (red) and compensated (green) cases. (c) Side views of fabricated voxels at a depth of 20 μm when the beam is uncompensated (left) and compensated (right).

Fig. 4
Fig. 4

(a) Transmission microscope images of the top view of FCC PhCs of 50 layers and of lattice constant 4.5 μm fabricated without (top) and with (bottom) compensation of the refractive-index mismatch aberration. (b) Smoothed transmission spectrum of the uncompensated (red) and compensated (green) PhCs in (a). (c) Calculated focal intensity distributions that occur when fabricating the top 16 layers of the uncompensated (left) and compensated (right) PhCs in (a).

Fig. 5
Fig. 5

Smoothed transmission spectrum of FCC PhCs of 16 layers and a lattice constant of 4.5 μm fabricated with a depth below the surface and energy above fabrication threshold of (a) 5 μm and 14 nJ, (b) 15 μm and 41 nJ, (c) 20 μm and 54 nJ, (d) 30 μm and 81 nJ. The red spectrum correspond to PhCs with no compensation while the blue and green spectrum correspond to PhCs with aberration compensation based on the isotropic aberration function and our adaptive compensation method, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ψ = kd ( n 2 cos θ 2 n 1 cos θ 1 )

Metrics