Abstract

The effect of polarization-matched Al0.25In0.08Ga0.67N electron-blocking layer (EBL) on the optical performance of ultraviolet Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.84N multi-quantum well (MQW) laser diodes (LDs) was investigated. The polarization-matched Al0.25In0.08Ga0.67N electron blocking layer (EBL) was employed in an attempt to reduce the polarization effect inside the active region of the diodes. The device performance which is affected by piezoelectric was studied via drift-diffusion model for carrier transport, optical gain and losses using the simulation program of Integrated System Engineering Technical Computer Aided design (ISE TCAD). The optical performance of the LD using quaternary Al0.25In0.08Ga0.67N EBL was compared with the LD using ternary Al0.3Ga0.7N EBL where both materials have the same energy band gap of Eg = 3.53 eV. The self-consistent ISE-TCAD simulation program results showed that the polarization-matched quaternary Al0.25In0.08Ga0.67N EBL is beneficial as it confines the electrons inside the quantum well region better than ternary Al0.3Ga0.7N EBL. The results indicated that the use of Al0.25In0.08Ga0.67N EBL has lower threshold current and higher optical intensity than those for Al0.3Ga0.7N EBL. The effect of Al0.25In0.08Ga0.67N EBL thickness on the performance of LDs has also been studied. Results at room temperature indicated that lower threshold current, high slope efficiency, high output power, and high differential quantum efficiency DQE occurred when the thickness of Al0.25In0.08Ga0.67N EBL was 0.25 µm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
    [CrossRef]
  2. J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
    [CrossRef]
  3. T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
    [CrossRef]
  4. J. R. Chen, C. H. Lee, T. S. Ko, Y. A. Chang, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers,” J. Lightwave Technol. 26(3), 329–337 (2008).
    [CrossRef]
  5. J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
    [CrossRef]
  6. Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
    [CrossRef]
  7. H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
    [CrossRef]
  8. ISE TCAD User’s Manual Release 10.0, Zurich, Switzerland, 2004, http://www.synopsy.com .
  9. J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
    [CrossRef]
  10. S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
    [CrossRef]
  11. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
    [CrossRef]
  12. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
    [CrossRef]
  13. F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001).
    [CrossRef]

2009

Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
[CrossRef]

2008

2006

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

2003

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

2002

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[CrossRef]

2001

F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001).
[CrossRef]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
[CrossRef]

1999

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

1996

S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

Ambacher, O.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[CrossRef]

Asano, T.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Bernardini, F.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[CrossRef]

F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001).
[CrossRef]

Chae, J. H.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Chae, S. H.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Chang, C. S.

S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

Chang, S. H.

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

Chang, Y. A.

Chen, J. R.

J. R. Chen, C. H. Lee, T. S. Ko, Y. A. Chang, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers,” J. Lightwave Technol. 26(3), 329–337 (2008).
[CrossRef]

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

Choi, K. K.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Chuang, S. L.

S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

Chuang, S.L.

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

DenBaars, S.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

Eliseev, P. G.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Farrell, R.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

Fiorentini, V.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[CrossRef]

F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001).
[CrossRef]

Florescu, D. I.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Ha, K. H.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Hino, T.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Ikeda, M.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Ikeda, S.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Jang, T.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Keating, T.

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Kim, H. G.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Kim, K. S.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Kim, Y. H.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Ko, T. S.

Kuo, H. C.

Kuo, Y. K.

Kuo, Y.-K.

Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
[CrossRef]

Lee, C. H.

J. R. Chen, C. H. Lee, T. S. Ko, Y. A. Chang, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers,” J. Lightwave Technol. 26(3), 329–337 (2008).
[CrossRef]

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

Lee, D.-S.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Lee, J.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Lee, S. N.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Lu, T. C.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
[CrossRef]

Minch, J.

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Mizuno, T.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Nakamura, S.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

Nam, O. H.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Osinski, M.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Paek, H. S.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Park, S.H.

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Park, Y. J.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Piprek, J.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

Pophristic, M.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Sakong, T.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Shibuya, K.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Son, J. K.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Sung, Y. J.

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

Takeya, M.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Tojyo, T.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Tsai, M.-C.

Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
[CrossRef]

Uchida, S.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
[CrossRef]

Wang, S. C.

Yang, C. H.

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

Yen, S.-H.

Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
[CrossRef]

Appl. Phys. Lett.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[CrossRef]

IEEE J. Quantum Electron.

J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[CrossRef]

H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006).
[CrossRef]

J. Appl. Phys.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009).
[CrossRef]

Phys. Rev. B

S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001).
[CrossRef]

Proc. SPIE

S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006).
[CrossRef]

Other

ISE TCAD User’s Manual Release 10.0, Zurich, Switzerland, 2004, http://www.synopsy.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The structure of quaternary AlInGaN multi quantum well laser diode.

Fig. 2
Fig. 2

Output power versus current curves of quaternary Al0.08In0.08Ga0.84N laser diodes with used quaternary and ternary electron blocking layer EBL

Fig. 3
Fig. 3

The optical intensity of quaternary Al0.08In0.08Ga0.84N LD with quaternary and ternary EBL

Fig. 4
Fig. 4

The electrostatic potential profile for top-down of the quaternary Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N MQW LD structure.

Fig. 5
Fig. 5

The threshold current of LD structure using quaternaryAl x In0.08Ga1- x -0.08N EBL versus Al mole fraction with fixed In concentration y=0.08

Fig. 6
Fig. 6

The threshold current of LD using quaternary Al0.25InyGa1-0.25- y N EBL versus In mole fraction with fixed Al concentration x=0.25

Fig. 7
Fig. 7

Output power and voltage versus current characteristics of LD with quaternary Al0.25In0.08Ga0.67N EBL at room temperature

Fig. 8
Fig. 8

The threshold current, output power, DQE, and OCF as a function of Al0.25In0.08Ga0.67N EBL thickness

Tables (3)

Tables Icon

Table 1 Semiconductor parameters of binary III-nitride group

Tables Icon

Table 2 The matching of the spontaneous polarization, piezoelectric polarization, and total polarization of the quaternary AlInGaN MQW LDs layers as wells, barriers, and blocking layer. Corresponding values for the ternary AlGaN blocking layer are also included. The relevant parameters used in the calculations are also listed.

Tables Icon

Table 3 Threshold current, slope efficiency, output power, and external DQE as a function of quaternary Al0.25In0.08Ga0.67N EBL thickness

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

. ( ε ϕ ) = q ( n p N D + N A )
n t + . J n = q ( G n R n )
p t + . J p = q ( G p R p )
ε x x = ε y y = a o a a
ε z z = 2 C 13 C 33 ε x x
Q (Al x In y Ga 1-x-y N) = Q(AlN)x + Q(InN)y + Q(GaN)(1 x y )
E g (Al x In y Ga z N) = xyE g u (AlInN) + y z E g u (InGaN) + x z E g u (AlGaN) xy + yz + zx
E g u (Al u In 1-u N) = u  E g (InN) + (1 u ) E g (AlN) -u(1-u)b(AlInN)
E g v (In v Ga 1-v N) = v   E g (GaN) + k (1 v ) E g (InN)-v(1-v)b(InGaN)
E g w (Al w Ga 1-w N) = w   E g (GaN) + (1 w ) E g (AlN)-w(1-w)b(AlGaN)
u = 1 x + y 2 ,                                     v = 1 y + z 2       ,                         v = 1 y + z 2 ,
P sp (Al x Ga 1-x N) = 0 .09     x     -     0 .034(1-x) + 0 .019     x     (1-x)
P sp (In x Ga 1-x N) = 0 .042     x     -     0 .034(1-x) + 0 .038x     (1-x)
P pz (Al x In y Ga 1-x-y N) = P pz (AlN)x + P pz (InN)y + P pz (GaN)(1 x y )
P pz (AlN) = 1 .808     ε     +     5 .624 ε 2 ,                                       f o r               ε           0 P pz (AlN) = 1 .808     ε     -     7.888 ε 2 ,                                                   f o r         ε           0 P pz (GaN) = 0 .918     ε     + 9.541     ε 2 , P pz (InN) = 1 .373 ε     -     7.559 ε 2 ,
P total (AlInGaN) = P sp ( A l I n G a N ) + P p z ( A l I n G a N )

Metrics