Abstract

The structural origin of the coloration mechanisms and related extraordinary optical properties of the wing scales of two breeds of Papilio butterflies, namely, Papilio ulysses and Papilio blumei, are explored. The precise ordered biophotonic nanostructures of the wing scales are characterized by scanning electron microscopy (SEM). Despite their structural similarities, the two breeds of Papilio butterflies do not exhibit any analogy in their optical performances. When illuminated with UV-Vis light, P. ulysses gives rise to two reflection peaks: one is from concavities, and the other is from ridges. These two spectral peaks shift their positions under different illumination angles (normal and 45° incident light). In contrast, the spectra for the green scales of P. blumei give one broad reflection peak, and the peak remains the same under normal and 45° incident light. The optical microscopy images indicate that the cap-shaped concavities on P. blumei’s wing scales generate an abnormal bicolor reflection with a strong polarization effect. Both of these two breeds of butterflies take advantage of color mixing strategy: the blue color of P. ulysses is mixed by the colors reflected from concavities and ridges; the green color of P. blumei is produced by the biocolor reflection from concavities. The differences of their coloration mixing mechanisms and optical performances are due to the variations of their nanostructures. The investigation of the color mixing mechanisms of these biologically photonic nanostructures may offer a convenient way for fabricating optical devices based on biomimicry.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007).
    [CrossRef]
  2. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
    [CrossRef] [PubMed]
  3. J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
    [CrossRef] [PubMed]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [CrossRef]
  5. S. Berthier, Iridescences: the Physical Colors of Insects (Springer, 2007).
  6. H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
    [CrossRef]
  7. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
    [CrossRef]
  8. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
    [CrossRef]
  9. Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
    [CrossRef]
  10. J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
    [CrossRef] [PubMed]
  11. Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
    [CrossRef]
  12. R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008).
    [CrossRef]
  13. R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009).
    [CrossRef] [PubMed]
  14. K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004).
    [CrossRef] [PubMed]
  15. K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006).
    [CrossRef] [PubMed]
  16. K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009).
    [CrossRef] [PubMed]
  17. P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
    [CrossRef] [PubMed]
  18. A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
    [CrossRef] [PubMed]
  19. A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
    [CrossRef]
  20. T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
    [CrossRef] [PubMed]
  21. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008).
  22. H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
    [CrossRef]
  23. P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).
  24. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt. 40(7), 1116–1125 (2001).
    [CrossRef]
  25. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
    [CrossRef] [PubMed]
  26. H. A. Macleod, Thin-Film Optical Filters (IOP, Bristol, 2001).
  27. A. Vasicek, Optics of Thin Films (Interscience New York, 1960).
  28. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [CrossRef]
  29. M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
    [CrossRef] [PubMed]
  30. A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
    [CrossRef] [PubMed]
  31. Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
    [CrossRef] [PubMed]

2010 (4)

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
[CrossRef] [PubMed]

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

2009 (4)

K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009).
[CrossRef] [PubMed]

T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
[CrossRef] [PubMed]

R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009).
[CrossRef] [PubMed]

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

2008 (2)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008).
[CrossRef]

2007 (4)

Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
[CrossRef]

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007).
[CrossRef]

M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
[CrossRef] [PubMed]

2006 (3)

Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004).
[CrossRef] [PubMed]

2003 (3)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

1999 (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

1996 (1)

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Akimoto, M.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Arikawa, K.

P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
[CrossRef] [PubMed]

Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
[CrossRef] [PubMed]

Arsenault, A. C.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Banerjee, S.

S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007).
[CrossRef]

Baumann, F.

T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
[CrossRef] [PubMed]

Bernard, G. D.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
[CrossRef] [PubMed]

Briscoe, A. D.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Bybee, S. M.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Cao, H.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Chen, Y.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Chiao, C. C.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

Dong, Z.

S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007).
[CrossRef]

Dufresne, E. R.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Fan, T. X.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Fu, R. T.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Funakawa, M.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Gu, J. J.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Guo, Q. X.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Hu, X. H.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Huang, J. Y.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

Jiggins, C.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Johnsen, S.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Kinoshita, M.

Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
[CrossRef] [PubMed]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Kitaev, V.

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Kumazawa, K.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Labhart, T.

T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
[CrossRef] [PubMed]

Land, M. F.

M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
[CrossRef] [PubMed]

Lawrence, C.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Li, D. Q.

M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
[CrossRef] [PubMed]

Li, Y. Z.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Liew, S. F.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Lim, M. L. M.

M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
[CrossRef] [PubMed]

Liu, X. H.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Liu, X. Y.

R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009).
[CrossRef] [PubMed]

R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008).
[CrossRef]

Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
[CrossRef]

K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
[CrossRef]

Llorente-Bousquets, J.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Manners, I.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Miguez, H.

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Mochrie, S. G. J.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

Noh, H.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Ozin, G. A.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Pirih, P.

P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
[CrossRef] [PubMed]

Prum, R. O.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Puzzo, D. P.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Reed, R. D.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Sambles, R.

Saranathan, V.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Sison-Mangus, M. P.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Stavenga, D. G.

P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
[CrossRef] [PubMed]

Sweeney, A.

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

Tabata, H.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Takeuchi, Y.

Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
[CrossRef] [PubMed]

Takimoto, J.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

Vukusic, P.

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt. 40(7), 1116–1125 (2001).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wakely, G.

Wang, X. D.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Wang, X. J.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Wang, Z. L.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Warren, A. D.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Xie, R. G.

R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009).
[CrossRef] [PubMed]

R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008).
[CrossRef]

Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
[CrossRef]

Xu, C.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Yu, X. D.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Yuan, F. R.

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

Zhang, D.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Zhang, K. Q.

K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004).
[CrossRef] [PubMed]

Zhu, S. M.

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Zi, J.

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

R. G. Xie and X. Y. Liu, “Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures,” Adv. Funct. Mater. 18(5), 802–809 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. (Deerfield Beach Fla.) 22(1), 53–56 (2010).
[CrossRef]

A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, and I. Manners, “A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink),” Adv. Mater. (Deerfield Beach Fla.) 15(6), 503–507 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Chen, J. J. Gu, S. M. Zhu, T. X. Fan, D. Zhang, and Q. X. Guo, “Iridescent large-area ZrO2 photonic crystals using butterfly as templates,” Appl. Phys. Lett. 94(5), 053901–053903 (2009).
[CrossRef]

Y. Liu, R. G. Xie, and X. Y. Liu, “Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field,” Appl. Phys. Lett. 91(6), 063105–063107 (2007).
[CrossRef]

Cell Tissue Res. (1)

T. Labhart, F. Baumann, and G. D. Bernard, “Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta,” Cell Tissue Res. 338(3), 391–400 (2009).
[CrossRef] [PubMed]

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

R. G. Xie and X. Y. Liu, “Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals,” J. Am. Chem. Soc. 131(13), 4976–4982 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

K. Q. Zhang and X. Y. Liu, “Controlled formation of colloidal structures by an alternating electric field and its mechanisms,” J. Chem. Phys. 130(18), 184901 (2009).
[CrossRef] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

P. Pirih, K. Arikawa, and D. G. Stavenga, “An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196(7), 501–517 (2010).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

Y. Takeuchi, K. Arikawa, and M. Kinoshita, “Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus,” J. Exp. Biol. 209(15), 2873–2879 (2006).
[CrossRef] [PubMed]

Nano Lett. (1)

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett. 6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[CrossRef]

Nature (3)

A. Sweeney, C. Jiggins, and S. Johnsen, “Insect communication: polarized light as a butterfly mating signal,” Nature 423(6935), 31–32 (2003).
[CrossRef] [PubMed]

K. Q. Zhang and X. Y. Liu, “In situ observation of colloidal monolayer nucleation driven by an alternating electric field,” Nature 429(6993), 739–743 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404(6777), 457–458 (2000).
[CrossRef] [PubMed]

Opt. Rev. (2)

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3(2), 139–145 (1996).
[CrossRef]

S. Banerjee and Z. Dong, “Optical characterization of iridescent wings of Morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm,” Opt. Rev. 14(6), 359–361 (2007).
[CrossRef]

Photonics Sci. News (1)

P. Vukusic and J. R. Sambles, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

Phys. Rev. Lett. (1)

K. Q. Zhang and X. Y. Liu, “Two scenarios for colloidal phase transitions,” Phys. Rev. Lett. 96(10), 105701 (2006).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. D. Briscoe, S. M. Bybee, G. D. Bernard, F. R. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets, and C. C. Chiao, “Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies,” Proc. Natl. Acad. Sci. U.S.A. 107(8), 3628–3633 (2010).
[CrossRef] [PubMed]

J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Science (1)

M. L. M. Lim, M. F. Land, and D. Q. Li, “Sex-specific UV and fluorescence signals in jumping spiders,” Science 315(5811), 481 (2007).
[CrossRef] [PubMed]

Other (4)

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, Singapore, 2008).

H. A. Macleod, Thin-Film Optical Filters (IOP, Bristol, 2001).

A. Vasicek, Optics of Thin Films (Interscience New York, 1960).

S. Berthier, Iridescences: the Physical Colors of Insects (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photograph of (a) P. ulysses and (b) P. blumei butterflies showing their blue and green colors.

Fig. 2
Fig. 2

Measured reflectance spectra for (a) P. Ullysses and (b) P. blumei, black lines indicate spectra for normal incident light while red lines are spectra for 45° incident light

Fig. 3
Fig. 3

SEM images of the concavities (a), ridges (b) and transverse cross section (c) structures for P. ulysses, SEM images of the concavities (d), ridges (e) and transverse cross section (f) structures for P. blumei.

Fig. 7
Fig. 7

SEM images of the scales on the surface of P. ulysses (left) and P. blumei (right).

Fig. 4
Fig. 4

Optical microscopy images of the butterflies. (a) Bright field image and (b) taken under crossed polarizers for P. ulysses. (c) Bright field image and (d) taken under crossed polarizers light for P. blumei. Scale bar: 20μm

Fig. 8
Fig. 8

(a) The air layer structures for the multi-layered scales, some cuticle particles distribute on the surface of the air layer. Inset is 2D Fast Fourier Transform of the image, which proves that the cuticle particles are randomly distributed. (b) The densities of the cuticle particles on different layers are different, as well as the refractive indexes of the air layers. The value of density and refractive index increases from the first layer to fifth layer, and then decreases from the fifth layer to tenth layer.

Fig. 9
Fig. 9

Theory calculated reflective spectra for (a) P. ulysses and (b) P. blumei according to the multi-layer structures of their concavities, black lines are spectra for normal incident light and red lines are for 45° incident light. For P. ulysses, the spectral peak reflected by concavities is 550nm under normal incident light and 380nm under 45° incident light. For P. blumei, the spectral peak reflected by the flat portions of concavities is 600nm under normal incident and 450nm under 45° incident light.

Fig. 5
Fig. 5

Illustration of the coloration mechanism of the ridge on the scale surface of P. ulysses. (a) The normal incident light interacts with the main ribs at an angle ~60°, and (b) ~15° for the 45° incident light.

Fig. 6
Fig. 6

Illustration of the coloration mechanism of P. blumei’s concavities under normal incident light (a) and 45° incident light (b).

Tables (2)

Tables Icon

Table 1 Illustration for the two reflection peaks of P. ulysses

Tables Icon

Table 2 Illustration for the color mixing mechanism of P. blumei

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( X Y ) = { r = 1 n ( cos δ r i sin δ r η r i η r sin δ r cos δ r ) }
R = ( η 0 X Y ) ( η 0 X Y ) * ( η 0 X + Y ) ( η 0 X + Y ) *

Metrics