Abstract

We implement dispersion-tolerant and time-gating-free all-optical OFDM transmission using a photonic-integrated discrete Fourier transform (DFT) device. We show that 35-Gb/s OFDM data having near-unity spectral efficiency can be transmitted all-optically with 1-dB dispersion margin of ~1000 ps/nm. The passive-optical DFT circuit is implemented using multi-mode interference (MMI) couplers on a high index-contrast silica integrated-optic platform. We also propose a photonic DFT circuit based on an NxN MMI device capable of simultaneous channelization of OFDM signals into N subcarriers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).
  2. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC '09, PD2.6 (2009).
  3. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC 2002, ThD1 (2002).
  4. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30x100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC 2007, PDS 1.7 (2007).
  5. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  6. K. Takiguchi, T. Kitoh, A. Mori, M. Ogima, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT circuit,” ECOC 2010, PD1.4 (2010).
  7. Z. Wang, K. S. Kravtsov, Y.-K. Huang, and P. R. Prucnal, “Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system,” Opt. Express 19(5), 4501–4512 (2011).
    [CrossRef] [PubMed]
  8. I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
    [CrossRef]
  9. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [CrossRef] [PubMed]
  10. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
    [CrossRef] [PubMed]
  11. S. Corzine, P. Evans, M. Kato, G. He, M. Fisher, M. Raburn, A. Dentai, I. Lyubomirsky, R. Nagarajan, M. Missey, V. Lal, A. Chen, J. Thomson, W. Williams, P. Chavarkar, S. Nguyen, D. Lambert, T. Butrie, M. Reffle, R. Schneider, M. Ziari, C. Joyner, S. Grubb, F. Kish, and D. Welch, “10-channel x 40Gb/s per channel DQPSK monolithically integrated InP-based transmitter PIC,” OFC 2008, PDP18 (2008).

2011 (1)

2010 (1)

2008 (1)

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

2007 (1)

1994 (1)

Bachmann, M.

Ben Ezra, S.

Besse, P. A.

Buhl, L.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Bull, J. D.

Cabot, S.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Cappuzzo, M.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Chen, Y. F.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Dinu, M.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Dutta, N.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Ellis, A. D.

Freude, W.

Garcia Gunning, F. C.

Giles, C. R.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Gomez, L. T.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Healy, T.

Hillerkuss, D.

Huang, Y.-K.

Jaques, J.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Kang, I.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Kravtsov, K. S.

Leuthold, J.

Li, J.

Marculescu, A.

Melchior, H.

Narkiss, N.

Patel, S. S.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Piccirilli, A.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Prucnal, P. R.

Rasras, M.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Sigurdsson, G.

Teschke, M.

Wang, Z.

Winter, M.

Wong-Foy, A.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Worms, K.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, “All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20(12), 1024–1026 (2008).
[CrossRef]

Opt. Express (3)

Other (6)

S. Corzine, P. Evans, M. Kato, G. He, M. Fisher, M. Raburn, A. Dentai, I. Lyubomirsky, R. Nagarajan, M. Missey, V. Lal, A. Chen, J. Thomson, W. Williams, P. Chavarkar, S. Nguyen, D. Lambert, T. Butrie, M. Reffle, R. Schneider, M. Ziari, C. Joyner, S. Grubb, F. Kish, and D. Welch, “10-channel x 40Gb/s per channel DQPSK monolithically integrated InP-based transmitter PIC,” OFC 2008, PDP18 (2008).

K. Takiguchi, T. Kitoh, A. Mori, M. Ogima, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT circuit,” ECOC 2010, PD1.4 (2010).

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC '09, PD2.6 (2009).

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC 2002, ThD1 (2002).

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30x100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC 2007, PDS 1.7 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Left) all-optical DFT circuit (N = 8). (Right) solid (dashed) curve: a measured (calculated) optical spectrum of the all-optical DFT circuit.

Fig. 2
Fig. 2

Experimental setup. Insets (from top left in clockwise direction): optical spectrum of the spectral combs, optical spectrum of the OFDM signal, and filtered spectrum of Ch. 4 of the OFDM signal.

Fig. 3
Fig. 3

(a) BER vs. required OSNR. (b) Eye diagram for Ch. 4 (center channel). (c) Eye diagram for Ch. 7 (edge channel).

Fig. 4
Fig. 4

(a) Required OSNR for 10−3 BER as a function of dispersion. (b) BER of Ch. 4 for 84-km SSMF transmission (solid) and for b-t-b (hollow). (c) Eye diagram of Ch. 4 after 84-km SSMF transmission.

Fig. 5
Fig. 5

Schematic of labeling of the waveguides of an NxN MMI.

Fig. 6
Fig. 6

(left) Schematic illustrating wiring of delay lines with the input waveguides of an 8 x 8 MMI for DFT application. The paired numbers on the input waveguide side refer to the relative delay and phase shift of the optical delay lines, and the numbers on the output waveguides refer to the carrier frequency of the signal exiting from each waveguide. (right) transmission spectra (in linear scale) of the signals from the eight output ports of the device on the left.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E n = m = 1 N E ( t ( m 1 ) T ) e j 2 π ( n 1 ) ( m 1 ) / N ,
ϕ i o = π + π 4 N ( o i ) ( 2 N o + i ) , if  ( i + o ) = even,
ϕ i o = π 4 N ( i + o 1 ) ( 2 N i o + 1 ) ,  if  ( i + o ) = odd .
E n = m = 1 N E ( t ( m 1 ) T ) e j Δ ψ m e j ψ m n ,
ψ m n = ϕ μ ( m ) , μ ( n )
Δ ψ m = ϕ μ ( m ) , μ ( 1 )
μ : m 2 m 1  for  m N / 2 , where  N / 2  is the celing integer value of  N / 2.
μ : m 2 ( N + 1 m )  for  m > N / 2 .
f o = f 1 ( 1 ) o o / 2 / N T ,  where  o / 2  is the floor integer value of  o / 2.

Metrics