Abstract

An integrated optic approach, using hollow waveguides, has been evaluated for a compact, rugged, high efficiency heterodyne optical mixing circuit in the middle infrared. The approach has involved the creation of hollow waveguides and alignment features for a beam combiner component in a glass-ceramic substrate. The performance of the integrated beam combiner was tested as part of a full laser heterodyne spectro-radiometer in which a quantum cascade laser local oscillator emitting at 9.7 µm was mixed with incoherent radiation. The performance has been evaluated with both cryogenically-cooled and peltier-cooled photomixers demonstrating consistent detection limits of two and five times the shot noise limit, respectively. The hollow waveguide mixer has also shown advantages in temporal stability, laser spatial mode cleansing, and reduced sensitivity to optical feedback.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
    [CrossRef]
  2. K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
    [CrossRef]
  3. G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
    [CrossRef]
  4. D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
    [CrossRef]
  5. R. T. Menzies, “Laser heterodyne detection techniques”, in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer, Berlin, 1976).
  6. W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
    [CrossRef]
  7. R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
    [CrossRef] [PubMed]
  8. K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
    [CrossRef]
  9. D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
    [CrossRef]
  10. D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
    [CrossRef]
  11. G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005).
    [CrossRef] [PubMed]
  12. D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
    [CrossRef] [PubMed]
  13. D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
    [CrossRef] [PubMed]
  14. G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
    [CrossRef]
  15. D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47(16), 2993–2997 (2008).
    [CrossRef] [PubMed]
  16. D. Weidmann and G. Wysocki, “High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17(1), 248–259 (2009).
    [CrossRef] [PubMed]
  17. R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25(5), 304–306 (1974).
    [CrossRef]
  18. D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
    [CrossRef]
  19. R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).
  20. R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
    [CrossRef]
  21. R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
    [CrossRef]
  22. K. D. Laakmann and W. H. Steier, “Waveguides: characteristic modes of hollow rectangular dielectric waveguides,” Appl. Opt. 15(5), 1334–1340 (1976).
    [CrossRef] [PubMed]
  23. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995).
    [CrossRef] [PubMed]
  24. R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001).
    [CrossRef]

2009

2008

2007

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[CrossRef] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[CrossRef] [PubMed]

2006

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

2005

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005).
[CrossRef] [PubMed]

2004

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

2002

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

2001

R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001).
[CrossRef]

2000

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

1998

R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).

1995

1994

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

1990

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

1983

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

1977

R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[CrossRef] [PubMed]

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

1976

1974

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25(5), 304–306 (1974).
[CrossRef]

A’Hearn, M. F.

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

Abrams, R. L.

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25(5), 304–306 (1974).
[CrossRef]

Annen, J.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

Banerji, J.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Bell, W.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Bester, M.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Betz, A.

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Blockley, A.

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

Blockley, A. F.

R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).

Boreiko, R.

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Buhl, D.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

Cross, P. H.

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

Danchi, W. C.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Dave, H.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Davies, A. R.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Davies, R. R.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Degnan, J.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Deming, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Devereux, R. W. J.

R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).

Espenak, F.

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Fast, K.

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Fast, K. E.

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

Finlayson, E. D.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Fitelson, W.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Fogal, P. F.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Foord, R.

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

Gardiner, T. D.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Giesen, T. F.

Glenar, D. A.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Gorton, E. K.

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

Graham, D.

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

Haldemann, P.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Hale, D. D. S.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Hall, D. R.

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

Hewagama, T.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Hochuli, U.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Holmes, J. F.

Hoss, S.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Huffman, H.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Ingram, C.

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

Jenkins, R. M.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

Jennings, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Kostiuk, T.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Kramer, C.

R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001).
[CrossRef]

Krieg, J.

Krotz, P. J.

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

Krötz, P.

Laakmann, K. D.

Lipman, E. A.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Livengood, T.

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Livengood, T. A.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

Martin, N. A.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

McNie, M. E.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Menzies, R. T.

R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[CrossRef] [PubMed]

Monnier, J. D.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Mumma, M.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Mumma, M. J.

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

Murakawa, K.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

Papetti, T.

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

Perrett, B. J.

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Rask, B. J.

Reburn, W. J.

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[CrossRef] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[CrossRef] [PubMed]

Romani, P.

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

Schieder, R.

D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47(16), 2993–2997 (2008).
[CrossRef] [PubMed]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005).
[CrossRef] [PubMed]

R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001).
[CrossRef]

Schieder, R. T.

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

Schmulling, F.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

Seals, R. K.

R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[CrossRef] [PubMed]

Smith, K. M.

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[CrossRef] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[CrossRef] [PubMed]

Sonnabend, G.

D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47(16), 2993–2997 (2008).
[CrossRef] [PubMed]

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005).
[CrossRef] [PubMed]

Sornig, M.

D. Stupar, J. Krieg, P. Krötz, G. Sonnabend, M. Sornig, T. F. Giesen, and R. Schieder, “Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy,” Appl. Opt. 47(16), 2993–2997 (2008).
[CrossRef] [PubMed]

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

Steier, W. H.

Stupar, D.

Swann, N. R.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Tokunaga, A. T.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

Townes, C. H.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Tuthill, P. G.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Vetterle, V.

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

Waters, J. W.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Weidmann, D.

Wirtz, D.

G. Sonnabend, D. Wirtz, and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44(33), 7170–7172 (2005).
[CrossRef] [PubMed]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

Woods, P. T.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

Wysocki, G.

Zipoy, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25(5), 304–306 (1974).
[CrossRef]

Astron. Astrophys.

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver,” Astron. Astrophys. 435, 1181–1184 (2005).
[CrossRef]

R. Schieder and C. Kramer, “Optimization of heterodyne observations using Allan variance measurements,” Astron. Astrophys. 373(2), 746–756 (2001).
[CrossRef]

Astrophys. J.

D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D. Monnier, P. G. Tuthill, and C. H. Townes, “The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared,” Astrophys. J. 537(2), 998–1012 (2000).
[CrossRef]

Geophys. Res. Lett.

T. Kostiuk, T. A. Livengood, T. Hewagama, G. Sonnabend, K. E. Fast, K. Murakawa, A. T. Tokunaga, J. Annen, D. Buhl, and F. Schmulling, “Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion,” Geophys. Res. Lett. 32(22), L22205 (2005).
[CrossRef]

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, “Column measurements of stratospheric trace species over Are, Sweden in the winter of 1991-1992,” Geophys. Res. Lett. 21(13), 1347–1350 (1994).
[CrossRef]

K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A’Hearn, “Stratospheric ozone profiles from Mauna Kea, Hawai’i (19.8°N, 155.5°W) using infrared heterodyne spectroscopy, 1988–2003,” Geophys. Res. Lett. 31(8), L08109 (2004).
[CrossRef]

G. Sonnabend, M. Sornig, P. J. Krotz, R. T. Schieder, and K. E. Fast, “High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2,” Geophys. Res. Lett. 33(18), L18201 (2006).
[CrossRef]

Icarus

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the l0-µm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[CrossRef]

K. Fast, T. Kostiuk, P. Romani, F. Espenak, T. Hewagama, A. Betz, R. Boreiko, and T. Livengood, “Temporal behavior of stratospheric ammonia abundance and temperature following the SL9 Impacts,” Icarus 156(2), 485–497 (2002).
[CrossRef]

J. Mod. Opt.

R. M. Jenkins, R. W. J. Devereux, and A. F. Blockley, “Hollow Waveguide Integrated Optics: a Novel Approach to 10.6 µm laser radar,” J. Mod. Opt. 45(8), 1613–1627 (1998).

J. Phys. D Appl. Phys.

D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO 2 laser,” J. Phys. D Appl. Phys. 10(1), 1–6 (1977).
[CrossRef]

Opt. Express

Proc. SPIE

D. A. Glenar, M. J. Mumma, T. Kostiuk, H. Huffman, J. Degnan, H. Dave, U. Hochuli, and P. Haldemann, “Miniaturized, 9-12 micron heterodyne spectrometer with space qualifiable design features,” Proc. SPIE 1235, 933–942 (1990).
[CrossRef]

R. M. Jenkins, R. Foord, A. Blockley, T. Papetti, D. Graham, and C. Ingram, “Hollow waveguide integrated optic subsystem for a 10.6-μm range-Doppler imaging lidar,” Proc. SPIE 4034, 108–113 (2000).
[CrossRef]

R. M. Jenkins, B. J. Perrett, M. E. McNie, E. D. Finlayson, R. R. Davies, J. Banerji, and A. R. Davies, “Hollow waveguide devices and systems,” Proc. SPIE 7113, 71130E, 71130E-8 (2008).
[CrossRef]

Rev. Sci. Instrum.

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[CrossRef] [PubMed]

Science

R. T. Menzies and R. K. Seals., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[CrossRef] [PubMed]

Other

R. T. Menzies, “Laser heterodyne detection techniques”, in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer, Berlin, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the hollow waveguide mixing circuit.

Fig. 2
Fig. 2

A) Evolution of the amplitude and B) intensity coupling coefficients versus the dimension of the hollow waveguide for various Gaussian EHnm waveguide spatial modes.

Fig. 3
Fig. 3

Predictions of the trade-off between guide width and angular and lateral alignment tolerances for an operational wavelength of 9.7 µm.

Fig. 4
Fig. 4

Schematic of the optical setup implemented for the evaluation of hollow waveguide mixing for laser heterodyne spectro-radiometry. The numbers indicated by the optics corresponds to the focal lengths in millimeters. Magnification γ is indicated close to laser waist positions.

Fig.  5
Fig. 5

Far field Quantum cascade laser beam contour at the input (A) and output (B) of the hollow waveguide mixing circuit.

Fig. 6
Fig. 6

Measurements with the LN2 cooled photomixer. The bandwidth was 400 MHz, the blackbody temperature was 573 K and the integration time was 50 ms. A) evolution of the heterodyne signal to noise ratio (black data points and left Y axis) and the heterodyne signal (blue data points and right Y axis) as the LO power is varied. B) Allan variance plots of the heterodyne signal (left axis) and the DC signal (right Y axis).

Fig. 7
Fig. 7

Measurements with the TEC photomixer. The bandwidth was 600 MHz, the blackbody temperature was 823K and the integration time was 50 ms. A) evolution of the heterodyne signal to noise ratio (black data points, left Y axis) and the heterodyne signal (blue data points, right Y axis) as the LO power is varied. B) Allan variance plots of the heterodyne signal (left axis) and the DC signal (right Y axis).

Fig. 8
Fig. 8

Measured and fitted calculated heterodyne absorption spectra of carbonyl sulphide and associated residuals. A) spectrum was recorded with the LN2 photomixer, and B) spectrum recorded with the TEC photomixer. The black dots are the measured spectra obtained with a 5 cm long gas cell containing 29 Torr of OCS, while the red curve shows a fitted calculated spectrum. The lower panels show the corresponding residuals. The blackbody temperature was 573 K, double side band detection bandwidth was 400 MHz with an integration time of 500 ms and the LO power was 150 µW.

Fig. 9
Fig. 9

Heterodyne emission spectrum of OCS (29 Torr, 5 cm). The black dots are the raw experimental measurements corrected for baseline effects, the red curve is a 30-point smoothed average. The blue trace is the theoretical calculation of the brightness temperature.

Tables (1)

Tables Icon

Table 1 Summary of the performance of the hollow waveguide LHSR using both LN2 and TEC photomixers under a variety of operating conditions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A n m ( ω 0 ) = C n x ( ω 0 ) C m y ( ω 0 ) ,
C n x ( ω 0 ) = ( 2 π ) 1 / 4 ω 0 a × exp [ ( n π ω 0 4 a ) 2 ] × R E [ e r f ( 4 ω 0 ) j n π 4 a + c . c . ] .
ρ = η Δ B τ exp ( h ν k T ) 1 1 S N R m ,

Metrics