Abstract

We study theoretically and experimentally the hemi-urchin shaped zinc oxide (ZnO) nanostructures for broadband and wide-angle antireflection coatings. The antireflective characteristics of hemi-urchin shaped ZnO nanostructures, which can be formed by integrating one-dimensional (1D) nanostructures (i.e., nanorods) on the periodic 2D structural architecture, are investigated. The optimization process is performed using a rigorous coupled-wave analysis method in terms of the order of taper of Si subwavelength gratings (SWGs) as a 2D structural architecture, the geometry of Si SWGs, and the height/size of ZnO nanorods. To simply test an experimental feasibility, a hemi-urchin shaped ZnO nanostructure is fabricated by hydrothermally growing ZnO nanorods on the periodic Si SWG structure. The angle-dependent reflectance of the hemi-urchin shaped ZnO nanostructures on the Si SWG is compared with that of the vertically aligned ZnO nanorod arrays on the Si substrate. The optimized hemi-urchin shaped ZnO nanostructure can significantly improve the antireflective property by suppressing the surface reflection over a broad spectrum and a wide range of angles of light incidence, indicating a reasonable agreement with the experimental results.

© 2010 OSA

Full Article  |  PDF Article

Corrections

Yeong Hwan Ko and Jae Su Yu, "Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings: erratum," Opt. Express 22, 25193-25193 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-21-25193

References

  • View by:
  • |
  • |
  • |

  1. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
    [CrossRef] [PubMed]
  2. D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
    [CrossRef]
  3. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
    [CrossRef]
  4. L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
    [CrossRef]
  5. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  6. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
    [CrossRef]
  7. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
    [CrossRef]
  8. C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
    [CrossRef] [PubMed]
  9. N. F. Hartman and T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt. 27(17), 3738–3743 (1988).
    [CrossRef] [PubMed]
  10. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  11. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34(22), 3532–3534 (2009).
    [CrossRef] [PubMed]
  12. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010).
    [CrossRef] [PubMed]
  13. Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
    [CrossRef]
  14. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [CrossRef] [PubMed]
  15. N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
    [CrossRef]
  16. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
    [CrossRef]
  17. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
    [CrossRef]
  18. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  19. T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
    [CrossRef]
  20. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
    [CrossRef] [PubMed]
  21. J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
    [CrossRef] [PubMed]
  22. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  23. Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
    [CrossRef]
  24. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
    [CrossRef] [PubMed]
  25. Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
    [CrossRef] [PubMed]
  26. B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004).
    [CrossRef] [PubMed]
  27. G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
    [CrossRef]
  28. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  29. Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010).
    [CrossRef] [PubMed]
  30. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
    [CrossRef]

2010 (10)

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

2009 (3)

2008 (8)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[CrossRef] [PubMed]

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

2007 (2)

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
[CrossRef]

2004 (1)

B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004).
[CrossRef] [PubMed]

2003 (1)

1998 (1)

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

1988 (1)

1983 (1)

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Asakawa, K.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Bae, S. Y.

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Bando, Y.

G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
[CrossRef]

Bechelany, M.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Bello, I.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Bouhafs, D.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

Brett, M. J.

Chen, H.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Chen, J.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Chen, L.

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

Chen, Z. H.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Cheng, C.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Cheng, H. M.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Chhajed, S.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Chi, L.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Chikouche, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

Cho, J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Cong, H. T.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Crawford, M. H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Elias, J.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Feng, L.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Fujimoto, A.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Fung, K. K.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Gaylord, T. K.

Gralak, B.

Gu, Z.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[CrossRef] [PubMed]

Hartman, N. F.

Hiraoka, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Ho, K. M.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Huang, J.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[CrossRef] [PubMed]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Jiang, B.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Jiang, P.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Kennedy, S. R.

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Kim, J. K.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

Kim, Y. S.

Ko, Y. H.

Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010).
[CrossRef] [PubMed]

Kuo, M. L.

Lee, C. J.

G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
[CrossRef]

Lee, C. S.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Lee, M. H.

Lee, S. G.

Lee, S. T.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lee, Y. T.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

Leem, J. W.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Lévy-Clément, C.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Li, H.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Li, W.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Li, Z.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Lin, S. Y.

Lin, X.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Linn, N. C.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Liu, B.

B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004).
[CrossRef] [PubMed]

Loy, M. M. T.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Lu, N.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Lu, Y.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Michler, J.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Min, W. L.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Mont, F. W.

Moussi, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

Nakanishi, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Okino, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Ozbay, E.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pan, Z. W.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[CrossRef] [PubMed]

Paranthaman, M. P.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[CrossRef] [PubMed]

Park, H. R.

Park, J. M.

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Philippe, L.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Pierre, R.

Poxson, D. J.

Qi, D.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Ruiz, J. M.

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

Schubert, E. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

Schubert, M. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Shen, G.

G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
[CrossRef]

Shi, G.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Shimada, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Smigaj, W.

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Song, H. S.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

Southwell, W. H.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Sugimura, S.

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Sun, C. H.

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Tang, Y. B.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Tao, M.

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

Tayeb, G.

Wang, G.-Y.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Wang, N.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Wang, T. L.

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Wang, W.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Wang, X.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Wang, Z.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Wang, Z. L.

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[CrossRef] [PubMed]

Xu, H.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Xu, J.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[CrossRef] [PubMed]

Xu, M.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Yang, F.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Yang, H.

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

Yu, J. S.

Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

Zeng, H. C.

B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004).
[CrossRef] [PubMed]

Zhang, W. J.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Zheng, H.

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Zhou, W.

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

ACS Nano (1)

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[CrossRef] [PubMed]

Adv. Mater. (3)

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004).
[CrossRef] [PubMed]

J. Nanosci. Nanotechnol. (1)

Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010).
[CrossRef]

Nano Lett. (2)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008).
[CrossRef]

Nano Res. (1)

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Nanotechnology (2)

J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008).
[CrossRef] [PubMed]

C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008).
[CrossRef]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[CrossRef]

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) General geometry of Si SWGs expressed by the equation of the tapered cone, (b) geometries of Si SWGs at OT = 0.4, 1, 1.4, 2, and 3, (c) calculated effective refractive index profiles of the Si SWGs with RSWG = 150 nm and HSWG = 600 nm at OT = 0.4, 1, 1.4, 2, and 3.

Fig. 2
Fig. 2

(a) Contour plot of the calculated reflectance as a function of the OT for the Si SWG with DSWG = 300 nm and HSWG = 600 nm, and (b) calculated reflectance spectra of the Si SWGs at OT = 0.4, 1, 1.4, 2, and 3.

Fig. 3
Fig. 3

(a) Contour plot of the calculated reflectance as a function of the height of the Si SWG structure with RSWG = 150 nm for OT = 1.4, (b) contour plot of the calculated reflectance as a function of the angle of light incidence for the corresponding Si SWG structure.

Fig. 4
Fig. 4

(a) Objective geometry of the hemi-urchin shaped ZnO nanostructure on the ZnO seed layer/optimized Si SWG in the hexagonal periodic arrangement, (b) contour plot of the calculated reflectance of hemi-urchin shaped ZnO nanostructures as a function of the height of ZnO nanorods with DZnO = 50 nm, and (c) average reflectance of hemi-urchin shaped ZnO nanostructures at wavelengths of 300-3000 nm as a function of the size of ZnO nanorods with HZnO = 140 nm. The inset of (c) shows the contour plot of the calculated reflectance of the corresponding hemi-urchin shaped ZnO nanostructures as a function of the DZnO. The objective geometry is composed of the integrated ZnO nanorods on 100 nm-thick AZO layer/optimized Si SWG structure (RSWG = 150 nm, HSWG = 600 nm, OT = 1.4).

Fig. 5
Fig. 5

Contour plot of the calculated reflectance of (a) the optimized hemi-urchin shaped ZnO nanostructure on the ZnO seed layer/Si SWG structure and (b) the hexagonally aligned ZnO nanorods with a period of 60 nm on the ZnO seed layer/Si substrate as a function of the angle of light incidence.

Fig. 6
Fig. 6

(a) Schematic illustration and SEM images of the fabrication procedure of the hemi-urchin ZnO nanostructures on the AZO seed layer/Si SWGs, and (b) measured specular reflectance spectra as a function of the angle of light incidence for (i) hemi-urchin shaped ZnO nanostructures on AZO seed layer/Si SWG and (ii) ZnO nanorod arrays on the AZO seed layer/Si substrate. The insets of (b) show the cross-sectional SEM images of the corresponding structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z = ( r R S W G ) O T + H S W G a n d x 2 + y 2 = r 2 ( 0 z H S W G ) ,

Metrics