Abstract

A novel tunable terahertz notch filter is demonstrated using antiresonant reflecting hollow waveguides with movable metal layers outside dielectric claddings. Based on the Fabry-Pérot resonance of the dielectric cladding, multiple deep notches are observed in a broad THz transmission spectrum. Continuous shift of notch frequencies is for the first time experimentally observed by lateral translation of metal layers from dielectric claddings. The measured maximum frequency-tuning-range approached 60GHz, equaling to 50% of the bandwidth of every passband, and a 20dB rejection notch-depth with a linewidth as narrow as 6GHz at frequency of around 0.2THz was also achieved. Numerical simulations match the measurements and verify the spectral-tuning mechanism.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
    [CrossRef]
  2. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  3. H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
    [CrossRef]
  4. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
    [CrossRef]
  5. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
    [CrossRef]
  6. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
    [CrossRef] [PubMed]
  7. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
    [CrossRef]
  8. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
    [CrossRef] [PubMed]
  9. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [CrossRef] [PubMed]
  10. B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
    [CrossRef] [PubMed]
  11. W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009).
    [CrossRef]
  12. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  13. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004).
    [CrossRef] [PubMed]
  14. U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
    [CrossRef]
  15. K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977).
    [CrossRef]

2010 (2)

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express 18(5), 4790–4795 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (1)

2006 (1)

2004 (4)

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004).
[CrossRef] [PubMed]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

1993 (1)

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

1977 (1)

K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977).
[CrossRef]

Abraham, M.

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

Agrawal, A.

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Chang, H. C.

Chang, H.-C.

Chang, S.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Chen, H. W.

Chen, H.-W.

Chen, L.-J.

Chen, P.

Croningolomb, M.

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Dawson, P.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

de Sterke, C.

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Dunn, S.

Eggleton, B.

Fogarty, G.

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Guo, P.

Han, J.

Harsha, S.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Hawkins, A. R.

Hein, G.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

Hsueh, Y. C.

Huang, Y. J.

Kao, T.-F.

Kleine-Ostmann, T.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

Koch, M.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

Lai, C. H.

Lakhtakia, A.

Laman, N.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Lederer, F.

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Litchinitser, N.

Lu, J.-Y.

Lu, X.

McPhedran, R.

Measor, P.

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Mittleman, D. M.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

Nahata, A.

Phillips, B. S.

Pierz, K.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

Rollke, K. H.

K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977).
[CrossRef]

Schmidt, H.

Sohler, W.

K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977).
[CrossRef]

Steinvurzel, P.

Sun, C. K.

Sun, C.-K.

Sun, W. F.

W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009).
[CrossRef]

Tian, Z.

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Trutschel, U.

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

Wang, X. K.

W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009).
[CrossRef]

White, T.

Yu, C.-P.

Yuan, J.

Zhang, H.

Zhang, W.

Zhang, Y.

W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009).
[CrossRef]

Zhao, Y.

Zhu, W.

Appl. Phys. Lett. (4)

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97(13), 131106 (2010).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555 (2004).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85(22), 5173–5175 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

W. F. Sun, X. K. Wang, and Y. Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26(11), 114210 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. H. Rollke and W. Sohler, “Metal-clad waveguide as a cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

U. Trutschel, M. Croningolomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad anti-resonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5(3), 336–339 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission-type THz time-domain spectrometer for measuring the notch filter device. The planar ARRHW-based THz tunable notch filter was illustrated schematically, where t and d respectively denote the thickness of PMMA slab cladding and a variable spacing between the metal plate and the cladding layer.

Fig. 2
Fig. 2

(a) Measured THz transmission spectra of bare planar ARRHW with t = 1.42mm. Normalized THz electric field profiles at frequencies of transmission dip (b) and peak (c) Region shaded with oblique lines represents PMMA slab claddings. The blue arrows indicate the phases of oscillatory electric fields corresponding to transmission dip and peak frequencies are peak and valley of the oscillations, respectively.

Fig. 3
Fig. 3

(a) Measured TE-polarized THz transmission spectra of ARRHW-based notch filter with various spacings d. Inset Figs. (1, 2, 3, 4) present half-simulated normalized THz modal patterns at frequencies of notch dips, 0.172, 0.190, 0.194, and 0.216THz. The cyan and orange regions represent the PMMA cladding and movable metal layer, respectively, and the hollow core of the waveguide is located at positions of 0~4mm. Comparison of measured (solid line) and simulated (dashed line) dip-frequency positions at (b) 2nd and (c) 3rd -order passband. Vertical dot lines indicate theoretical notch dip frequencies.

Fig. 4
Fig. 4

(a) Measured and (b) theoretical frequency shifts, Δf, of notch dips with various spacings d. The zero frequency shifts for TM polarization are shown in the case of t=1.42mm at 0.171THz.

Metrics