Abstract

A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
    [CrossRef]
  2. N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
    [CrossRef]
  3. M. A. Duguay and R. M. Edgar, “Lighting with sunlight using sun tracking concentrators,” Appl. Opt. 16(5), 1444–1446 (1977).
    [CrossRef] [PubMed]
  4. L. M. Fraas, W. R. Pyle, and P. R. Ryason, “Concentrated and piped sunlight for indoor illumination,” Appl. Opt. 22(4), 578–582 (1983).
    [CrossRef] [PubMed]
  5. C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
    [CrossRef]
  6. W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
    [CrossRef]
  7. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
    [CrossRef]
  8. G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18(4), 3746–3753 (2010).
    [CrossRef] [PubMed]
  9. H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
    [CrossRef]
  10. C. Domínguez, I. Antón, and G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008).
    [CrossRef] [PubMed]
  11. J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
    [CrossRef]
  12. D. Malacara, Optical Shop Testing 2ndEdition, (Wiley, 1992).
  13. H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
    [CrossRef]
  14. M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).
  15. Nichia, “NS6w183T Datasheet,” http://www.nichia.com/specification/led_09/NS6W183T-H3-E.pdf
  16. V. N. Mahajan, Optical Imaging And Aberrations - Part 1 Ray Geometrical Optics, (SPIE press,1998).
  17. Illumination Engineering Society of North America, “Glare,” in IESNA Lighting Handbook 9thEdition, (IESNA, 2000), pp. 128–131.

2010

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18(4), 3746–3753 (2010).
[CrossRef] [PubMed]

2008

C. Domínguez, I. Antón, and G. Sala, “Solar simulator for concentrator photovoltaic systems,” Opt. Express 16(19), 14894–14901 (2008).
[CrossRef] [PubMed]

C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
[CrossRef]

J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[CrossRef]

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[CrossRef]

2007

N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[CrossRef]

1997

H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

1983

1977

Antón, I.

Benítez, P.

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

Chang, F.

Chen, H.

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

Chey, S. J.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Cvetkovic, A.

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Devonshire, R.

R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[CrossRef]

Domínguez, C.

Duguay, M. A.

Edgar, R. M.

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Fraas, L. M.

Gordon, J.

H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Gunawan, O.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Hernández, M.

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

Kellock, A. J.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Lasken, M.

H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Liu, W.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Miñano, J. C.

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

Mitzi, D. B.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Mohelnikova, J.

J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Pen, J. W.

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Pyle, W. R.

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Ries, H.

H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Ryason, P. R.

Sala, G.

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Shin, D. W.

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

Soref, R. A.

Sun, G.

Sun, W. S.

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Tsuei, C. H.

Yoo, J. B.

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

Yu, S. M.

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

Yuan, M.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

Zheludev, N.

N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[CrossRef]

Appl. Opt.

Chem. Mater.

W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, “12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process,” Chem. Mater. 22, 1010–1014 (2010).
[CrossRef]

J. Light Visual Environ.

R. Devonshire, “The Competitive Technology Environment for LED Lighting,” J. Light Visual Environ. 32, 275–287 (2008).
[CrossRef]

J. Mohelnikova, “Evaluation of Indoor Illuminance from Light Guides,” J. Light Visual Environ. 32, 20–26 (2008).
[CrossRef]

Nanoscale Res. Lett.

H. Chen, S. M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett. 5, 217–233 (2010).
[CrossRef]

Nat. Photonics

N. Zheludev, “The life and times of the LED- a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[CrossRef]

Opt. Express

Proc. SPIE

M. Hernández, A. Cvetkovic, P. Benítez, and J. C. Miñano, ““High-performance Köhler concentrators with uniform irradiance on solar cell”, Invited paper Nonimaging Optics and Efficient Illumination Systems V,” Proc. SPIE 7059, 705908 (2008).

Prog. Photovoltaics

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient znO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Sol. Energy

H. Ries, J. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Other

D. Malacara, Optical Shop Testing 2ndEdition, (Wiley, 1992).

Nichia, “NS6w183T Datasheet,” http://www.nichia.com/specification/led_09/NS6W183T-H3-E.pdf

V. N. Mahajan, Optical Imaging And Aberrations - Part 1 Ray Geometrical Optics, (SPIE press,1998).

Illumination Engineering Society of North America, “Glare,” in IESNA Lighting Handbook 9thEdition, (IESNA, 2000), pp. 128–131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Layout of the sunlight concentrator.

Fig. 2
Fig. 2

Reflectors used in the sunlight concentrator.

Fig. 3
Fig. 3

Distance between the light source point (focal point) and the reflective surface for: (a) a parabolic surface; and (b) an ellipsoidal surface.

Fig. 4
Fig. 4

Layout of the beam splitter that splits the sunlight into visible and non-visible spectra.

Fig. 5
Fig. 5

Transmittance of the plate beam splitter.

Fig. 6
Fig. 6

Optical switching system for saving solar energy saving when in the: (a) off state; and (b) on state.

Fig. 7
Fig. 7

Nichia LED: (a) NS6W183T; (b) candle power distribution curve; (c) parabolic reflector.

Fig. 8
Fig. 8

Absorption spectrum of CuInSe2 thin-film.

Fig. 9
Fig. 9

Layout of the light box.

Fig. 10
Fig. 10

Candle power distribution curve of each LED with parabolic reflector.

Fig. 11
Fig. 11

Indoor lighting simulation using the DIALux software.

Fig. 12
Fig. 12

Candle power distribution curve of the light box with only sunlight illumination.

Fig. 13
Fig. 13

Sunlight illuminance distributions, average illuminances and average differences on the table plane from 8 a.m. to 9 p.m.

Fig. 14
Fig. 14

Sunlight and LED Illuminance distributions, average illuminance and average differences on the table plane during the period from 5 p.m. to 9 p.m.

Tables (6)

Tables Icon

Table 1 Design parameters of the reflectors

Tables Icon

Table 2 Design parameters of the collimating lens

Tables Icon

Table 3 Illuminance measured for each sunlight concentrator on 07/29/2010 in Taipei, Taiwan

Tables Icon

Table 4 Specifications for the LG VEGACHEM Gr1(2t) diffuser

Tables Icon

Table 5 Average illuminance on the table plane obtained using only sunlight and the hybrid sunlight-LED sources

Tables Icon

Table 6 Power and electricity consumption for the different types of illumination

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d 1 = R 2
d 2 = R K + 1 ( 1 + K )
d 3 = R K + 1 ( 1 K )
N A = n sin θ 1 / 2 = D 2 f ,
E = d F d S ,
Ave. difference =  1 N n = 1 N | ( Illuminance ) n -Ave . illuminance Ave . illuminance | × 100 % ,

Metrics