Abstract

Intense photoluminescence was observed from mixed-valence Eu-doped nanocrystalline BaAl2Si2O8/LaBO3 glass ceramics. For preparation in air, the ratio between Eu3+ and Eu2+ luminescence depends on synthesis temperature. XRD, TEM and IR absorption spectra were employed to characterize the crystallization process and structural properties of the precursor glass and corresponding glass ceramics. When annealed at 950 °C, the material exhibited photoluminescence more than ten times stronger than was found in its glassy state. Spectroscopic data indicate that during such a heat treatment, even in air, a significant part of the Eu3+ ions is reduced to Eu2+. Lifetime of the 5D0 state of Eu3+ increases with increasing heat treatment temperature. Eu3+ species are largely incorporated on La3+ sites in LaBO3 crystallites whereas Eu2+ locates on Ba2+ sites in the hexacelsian phase. A mechanism for the internal reduction of Eu3+ to Eu2+ is proposed. Spectroscopic properties of the material suggest application in additive luminescent light generation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ronda, ed., Luminescence: From Theory to Applications (Wiley-VCH, 2008).
  2. K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
    [CrossRef] [PubMed]
  3. S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
    [CrossRef]
  4. S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
    [CrossRef]
  5. W. Höland, and G. H. Beall, Glass ceramic technology (American Ceramic Society, 2002).
  6. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from bismuth-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  7. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
    [CrossRef] [PubMed]
  8. S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
    [CrossRef]
  9. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
    [CrossRef]
  10. B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion and luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
    [CrossRef] [PubMed]
  11. Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
    [CrossRef]
  12. M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
    [CrossRef]
  13. C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
    [CrossRef]
  14. Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
    [CrossRef]
  15. C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
    [CrossRef]
  16. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
    [CrossRef]
  17. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
    [CrossRef]
  18. M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006).
    [CrossRef]
  19. A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).
  20. R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
    [CrossRef]
  21. n.n., Natl. Buro Standards US monograph No. 25 (1), p. 20 (1962).
  22. K. El-Egili, “Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses,” Physica B 325, 340–348 (2003).
    [CrossRef]
  23. L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999).
    [CrossRef]
  24. M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
    [CrossRef]
  25. F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
    [CrossRef]
  26. P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
    [CrossRef]
  27. Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
    [CrossRef]
  28. H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
    [CrossRef]

2010 (2)

2009 (5)

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

2008 (1)

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

2007 (6)

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[CrossRef]

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
[CrossRef]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
[CrossRef]

B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion and luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
[CrossRef] [PubMed]

2006 (1)

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006).
[CrossRef]

2005 (1)

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

2004 (1)

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
[CrossRef] [PubMed]

2003 (3)

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

K. El-Egili, “Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses,” Physica B 325, 340–348 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

2001 (1)

M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
[CrossRef]

1999 (2)

L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999).
[CrossRef]

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

1997 (1)

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

1970 (1)

R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
[CrossRef]

Aronne, A.

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

Arora, M.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Azeem, P. A.

S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
[CrossRef]

Babu, S. S.

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

Baccaro, S.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Balaji, S.

S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
[CrossRef]

Ballato, J.

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

Bambauer, H. U.

R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
[CrossRef]

Böhlhoff, R.

R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
[CrossRef]

Chen, D.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Chen, Q.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Chen, S.

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

Chen, Y.

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

Cho, E. J.

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

Chumanov, G.

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

Da, N.

Dejneka, M.

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

Dimitrijevic, R.

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

Dondur, V.

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

Dong, G.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
[CrossRef]

Edgar, A.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

El-Egili, K.

K. El-Egili, “Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses,” Physica B 325, 340–348 (2003).
[CrossRef]

Esposito, S.

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

Fan, X.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Giesber, H.

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
[CrossRef]

Hamlin, J.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Hobbs, L.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Hoffmann, W.

R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
[CrossRef]

Holland, D.

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Hong, G.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Jang, K.

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

Jayasankar, C. K.

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

Jiang, N.

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion and luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
[CrossRef] [PubMed]

Jiang, X.

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

Kawaguchi, T.

M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
[CrossRef]

Kolis, J.

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

Kremenovic, A.

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

Krolikowski, S.

Lee, H.

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

Li, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Lin, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Lin, J.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Liu, X.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Luo, Q.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Mahato, K. K.

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
[CrossRef] [PubMed]

Matsuya, S.

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Nogami, M.

M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
[CrossRef]

Norby, P.

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

Pei, Z.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Peng, M.

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from bismuth-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
[CrossRef] [PubMed]

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Pernice, P.

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

Qian, B.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Qiao, X.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Qiao, Y.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Qiu, J.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion and luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
[CrossRef] [PubMed]

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

Rai, A.

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
[CrossRef] [PubMed]

Rai, S. B.

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
[CrossRef] [PubMed]

Reddy, R. R.

S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
[CrossRef]

Ruan, J.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Saradhi, M. P.

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006).
[CrossRef]

Schmidt, M. A.

Schwefel, H. G.

Schweizer, S.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Secu, M.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Sharma, G.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Sigaev, V. N.

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

Singh, D.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Singh, D. P.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Spaeth, J.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Sprenger, B.

Sroda, M.

L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999).
[CrossRef]

Stamboulis, A.

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Stoch, L.

L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999).
[CrossRef]

Su, Q.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Takeuchi, A.

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Tang, B.

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

Thind, K. S.

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
[CrossRef]

Varadaraju, U. V.

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006).
[CrossRef]

Wang, C.

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

Wang, F.

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Wang, M.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Williams, G. V. M.

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

Wondraczek, L.

Xiao, H.

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

Yang, H.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Yang, J.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Yasumori, A.

M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
[CrossRef]

Zhang, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Zhang, S.

Zhang, X.

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

Zhao, C.

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

Zhou, Q.

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

Zhou, S.

Zhu, B.

Chem. Mater. (1)

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009).
[CrossRef]

J. Appl. Phys. (3)

H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003).
[CrossRef]

S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005).
[CrossRef]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007).
[CrossRef]

J. Lumin. (2)

Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009).
[CrossRef]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007).
[CrossRef]

J. Mater. Chem. (1)

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

J. Mol. Struct. (1)

L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999).
[CrossRef]

J. Non-Cryst. Solids (1)

P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007).
[CrossRef]

J. Solid State Chem. (1)

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009).
[CrossRef]

Key Eng. Mater. (1)

F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008).
[CrossRef]

Mater. Lett. (1)

C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007).
[CrossRef]

Naturwissenschaften (1)

R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009).
[CrossRef]

Opt. Commun. (1)

M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Physica B (3)

S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007).
[CrossRef]

Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009).
[CrossRef]

K. El-Egili, “Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses,” Physica B 325, 340–348 (2003).
[CrossRef]

Solid State Ion. (1)

A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004).
[CrossRef] [PubMed]

Other (3)

C. Ronda, ed., Luminescence: From Theory to Applications (Wiley-VCH, 2008).

W. Höland, and G. H. Beall, Glass ceramic technology (American Ceramic Society, 2002).

n.n., Natl. Buro Standards US monograph No. 25 (1), p. 20 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

XRD pattern of as-made Eu-doped SABBL and corresponding samples after annealing at various temperatures (left). Right: Bright field image showing diffraction contrast of needle-shaped hexacelsian and globular LaBO3 crystallites. Inset: Corresponding diffraction pattern, resulting from contributions of several crystals with different orientation.

Fig. 2
Fig. 2

FTIR absorption spectra of SABBL samples. In (A) the deconvolution of the spectrum of the as-made glass is shown. (B) shows spectra of samples after annealing at different temperatures.

Fig. 3
Fig. 3

Eu3+-excitation (A) and emission (B) spectra of as-melted glass and SABBL samples after annealing at various temperatures. Inset of (B): Zoom at the spectral region of 500-570 nm.

Fig. 4
Fig. 4

Asymmetry ratio of the emission intensities of Eu3+ transitions of 5D07F2 and 5D07F1 for as-melted as well as annealed (2h) SABBL samples for different annealing temperatures.

Fig. 5
Fig. 5

Luminescence decay curve of Eu3+ emission resulting from 5D07F2 (A) and 5D07F1 (B) in as-melted Eu-doped SABBL and after annealing at various temperatures. Inset: Exponential plot of the same data, shown for clarity.

Fig. 6
Fig. 6

Eu2+-excitation (A) and emission (B) spectra of as-melted glass and SABBL samples after annealing at various temperatures. Inset of (B): Zoom at the spectral region of 375-675 nm.

Fig. 7
Fig. 7

Luminescence decay curve of Eu2+ emission from SABBL after annealing for 2 h at 950 °C. Inset: Exponential plot of the same data, shown for clarity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

3Ba 2 + + 2Eu 3 + V Ba + 2 [ Eu 3 + ] B a
V Ba V × Ba + 2e
2 [ Eu 3 + ] B a + 2e 2 [ Eu 2 + ] B a

Metrics