Abstract

We theoretically analyzed the lower bound of energy dissipation required for optical excitation transfer from smaller quantum dots to larger ones via optical near-field interactions. The coherent interaction between two quantum dots via optical near-fields results in unidirectional excitation transfer by an energy dissipation process occurring in the larger dot. We investigated the lower bound of this energy dissipation, or the intersublevel energy difference at the larger dot, when the excitation appearing in the larger dot originated from the excitation transfer via optical near-field interactions. We demonstrate that the energy dissipation could be as low as 25 μeV. Compared with the bit flip energy of an electrically wired device, this is about 104 times more energy efficient. The achievable integration density of nanophotonic devices is also analyzed based on the energy dissipation and the error ratio while assuming a Yukawa-type potential for the optical near-field interactions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ITU-T Focus Group on ICTs and Climate Change, http://www.itu.int/ITU-T/focusgroups/climate/index.html .
  2. L. B. Kish, “Moore's law and the energy requirement of computing versus performance,” IEE Proc., Circ. Devices Syst. 151(2), 190–194 (2004).
    [CrossRef]
  3. J. Gea-Banacloche, “Minimum energy requirements for quantum computation,” Phys. Rev. Lett. 89(21), 217901 (2002).
    [CrossRef] [PubMed]
  4. The Green Grid, http://www.thegreengrid.org/ .
  5. R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM Optical IP Networks: A Cost and Energy Perspective,” J. Lightwave Technol. 27(3), 243–252 (2009).
    [CrossRef]
  6. K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007).
    [CrossRef]
  7. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008).
  8. L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
    [CrossRef]
  9. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
    [CrossRef] [PubMed]
  10. M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
    [CrossRef]
  11. T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
    [CrossRef]
  12. J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
    [CrossRef]
  13. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
    [CrossRef]
  14. T. Mano and N. Koguchi, “Nanometer-scale GaAs ring structure grown by droplet epitaxy,” J. Cryst. Growth 278(1-4), 108–112 (2005).
    [CrossRef]
  15. W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
    [CrossRef]
  16. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
    [CrossRef]
  17. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
    [CrossRef]
  18. M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
    [CrossRef] [PubMed]
  19. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
    [CrossRef] [PubMed]
  20. H. Hori, “Electronic and Electromagnetic Properties in Nanometer Scales,” in Optical and Electronic Process of Nano-Matters, M. Ohtsu, ed. (Kluwer Academic, 2001), pp. 1–55.
  21. P. Kocher, J. Jaffe, and B. Jun, “Introduction to Differential Power Analysis and Related Attacks,” http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf .
  22. M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
    [CrossRef] [PubMed]
  23. H. Haug, and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004).
  24. S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
    [CrossRef]
  25. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, 1999).
  26. T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
    [CrossRef]
  27. W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
    [CrossRef]
  28. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
    [CrossRef]
  29. M. Ohtsu, and K. Kobayashi, Optical Near Fields (Springer, Berlin, 2004).
  30. S. Haykin, Communication Systems (John Wiley & Sons, New York, 1983).
  31. M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
    [CrossRef]
  32. K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
    [CrossRef]
  33. J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
    [CrossRef]
  34. H. Imahori, “Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas,” J. Phys. Chem. B 108(20), 6130–6143 (2004).
    [CrossRef]
  35. H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
    [CrossRef]
  36. V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006).
    [CrossRef]

2010 (3)

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

2009 (3)

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM Optical IP Networks: A Cost and Energy Perspective,” J. Lightwave Technol. 27(3), 243–252 (2009).
[CrossRef]

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

2008 (2)

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
[CrossRef]

2007 (5)

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
[CrossRef] [PubMed]

2006 (3)

V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

2005 (2)

2004 (4)

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

H. Imahori, “Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas,” J. Phys. Chem. B 108(20), 6130–6143 (2004).
[CrossRef]

L. B. Kish, “Moore's law and the energy requirement of computing versus performance,” IEE Proc., Circ. Devices Syst. 151(2), 190–194 (2004).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

2003 (3)

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

2002 (2)

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

J. Gea-Banacloche, “Minimum energy requirements for quantum computation,” Phys. Rev. Lett. 89(21), 217901 (2002).
[CrossRef] [PubMed]

Akahane, K.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

An, S. J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Ayre, R. W. A.

Bacher, G.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Baliga, J.

Bratkovsky, A.

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Burghardt, I.

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

Carey, V. P.

V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006).
[CrossRef]

Feldmann, J.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Forchel, A.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Franzl, T.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, “Minimum energy requirements for quantum computation,” Phys. Rev. Lett. 89(21), 217901 (2002).
[CrossRef] [PubMed]

Hansen, L.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Hasegawa, H.

K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007).
[CrossRef]

Hinton, K.

Holmström, P.

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Hori, H.

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
[CrossRef] [PubMed]

Imahori, H.

H. Imahori, “Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas,” J. Phys. Chem. B 108(20), 6130–6143 (2004).
[CrossRef]

Inoue, T.

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

Jeong, H.

T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
[CrossRef]

Kawazoe, T.

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Kim, M. Y.

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

Kish, L. B.

L. B. Kish, “Moore's law and the energy requirement of computing versus performance,” IEE Proc., Circ. Devices Syst. 151(2), 190–194 (2004).
[CrossRef]

Klar, T. A.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Kobayashi, K.

M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
[CrossRef] [PubMed]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Kodama, K.

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Koguchi, N.

T. Mano and N. Koguchi, “Nanometer-scale GaAs ring structure grown by droplet epitaxy,” J. Cryst. Growth 278(1-4), 108–112 (2005).
[CrossRef]

Kubota, F.

Lee, J. H.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Li, J.

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Liang, B. L.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Lim, J.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Mallet, J.-M.

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

Mano, T.

T. Mano and N. Koguchi, “Nanometer-scale GaAs ring structure grown by droplet epitaxy,” J. Cryst. Growth 278(1-4), 108–112 (2005).
[CrossRef]

Matsumoto, T.

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Miyazaki, T.

Molenkamp, L. W.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Muranaka, T.

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Nabetani, Y.

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Narita, Y.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Naruse, M.

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
[CrossRef] [PubMed]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
[CrossRef] [PubMed]

Nomura, W.

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

Oheim, M.

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

Ohmori, K.

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Ohta, R.

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

Ohtsu, M.

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
[CrossRef]

M. Naruse, H. Hori, K. Kobayashi, and M. Ohtsu, “Tamper resistance in optical excitation transfer based on optical near-field interactions,” Opt. Lett. 32(12), 1761–1763 (2007).
[CrossRef] [PubMed]

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Park, W. I.

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

Parthiban, R.

Pennycook, S. J.

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

Rogach, A. L.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Sablon, K. A.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Salamo, G. J.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Sangu, S.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14(1), 306–313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture based on optical near-field interaction between quantum dots,” Opt. Lett. 30(2), 201–203 (2005).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

Sato, K.

K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007).
[CrossRef]

Schietinger, S.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Schmidt, G.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Schömig, H.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Seufert, J.

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Shah, A. J.

V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006).
[CrossRef]

Shojiguchi, A.

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

Sorin, W. V.

Strom, N. W.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Tamura, H.

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

Thylén, L.

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Tsuchiya, M.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

Tucker, R. S.

Wang, S.-Y.

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Wang, Zh. M.

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Yamamoto, N.

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

Yatsui, T.

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
[CrossRef]

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Yi, G.-C.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

Yoo, J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Adv. Mater. (1)

W. I. Park, G.-C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15(6), 526–529 (2003).
[CrossRef]

Appl. Phys. B (2)

T. Yatsui, H. Jeong, and M. Ohtsu, “Controlling the energy transfer between near-field optically coupled ZnO quantum dots,” Appl. Phys. B 93(1), 199–202 (2008).
[CrossRef]

W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, and M. Ohtsu, “Structural dependency of optical excitation transfer via optical near-field interactions between semiconductor quantum dots,” Appl. Phys. B 100(1), 181–187 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82(18), 2957–2959 (2003).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

IEE Proc., Circ. Devices Syst. (1)

L. B. Kish, “Moore's law and the energy requirement of computing versus performance,” IEE Proc., Circ. Devices Syst. 151(2), 190–194 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Thylén, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

IEICE Trans. Commun, E (1)

K. Sato and H. Hasegawa, “Prospects and Challenges of Multi-Layer Optical Networks,” IEICE Trans. Commun, E 90-B, 1890–1902 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu, “Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction,” J. Appl. Phys. 93(5), 2937–2945 (2003).
[CrossRef]

J. Cryst. Growth (1)

T. Mano and N. Koguchi, “Nanometer-scale GaAs ring structure grown by droplet epitaxy,” J. Cryst. Growth 278(1-4), 108–112 (2005).
[CrossRef]

J. Electron. Packag. (1)

V. P. Carey and A. J. Shah, “The Exergy Cost of Information Processing: A Comparison of Computer-Based Technologies and Biological Systems,” J. Electron. Packag. 128(4), 346–352 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Nanophoton. (1)

W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “The observation of dissipated optical energy transfer between CdSe quantum dots,” J. Nanophoton. 1(1), 1–8 (2007).
[CrossRef]

J. Phys. Chem. B (1)

H. Imahori, “Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas,” J. Phys. Chem. B 108(20), 6130–6143 (2004).
[CrossRef]

J. Phys. Chem. C (1)

H. Tamura, J.-M. Mallet, M. Oheim, and I. Burghardt, “Ab Initio Study of Excitation Energy Transfer between Quantum Dots and Dye Molecules,” J. Phys. Chem. C 113(18), 7548–7552 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

Nano Lett. (1)

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton Recycling in Graded Gap Nanocrystal Structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, and M. Ohtsu, “Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions,” Phys. Rev. B 80(12), 125325 (2009).
[CrossRef]

J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, and L. W. Molenkamp, “Spin injection into a single self-assembled quantum dot,” Phys. Rev. B 69(3), 035311 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

J. Gea-Banacloche, “Minimum energy requirements for quantum computation,” Phys. Rev. Lett. 89(21), 217901 (2002).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

K. Ohmori, K. Kodama, T. Muranaka, Y. Nabetani, and T. Matsumoto, “Tunneling of spin polarized excitons in ZnCdSe and ZnCdMnSe coupled double quantum wells,” Phys. Status Solidi 7(6), 1642–1644 (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo, “Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates,” Semicond. Sci. Technol. 21(12), 1547–1551 (2006).
[CrossRef]

Other (9)

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008).

H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, 1999).

H. Haug, and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004).

M. Ohtsu, and K. Kobayashi, Optical Near Fields (Springer, Berlin, 2004).

S. Haykin, Communication Systems (John Wiley & Sons, New York, 1983).

The Green Grid, http://www.thegreengrid.org/ .

H. Hori, “Electronic and Electromagnetic Properties in Nanometer Scales,” in Optical and Electronic Process of Nano-Matters, M. Ohtsu, ed. (Kluwer Academic, 2001), pp. 1–55.

P. Kocher, J. Jaffe, and B. Jun, “Introduction to Differential Power Analysis and Related Attacks,” http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf .

ITU-T Focus Group on ICTs and Climate Change, http://www.itu.int/ITU-T/focusgroups/climate/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical near-field interaction between a smaller quantum dot (QD S ) and a larger one (QD L ). The input light is given by external propagating light at an optical frequency ωext . (b) State transition diagram of the two-dot system.

Fig. 2
Fig. 2

Two representative quantum dot systems: (a) System A, where the inter-dot interaction is strong (100 ps), and (b) System B, where the interaction is negligible (10,000 ps). (c) Yukawa-type screened potential of an optical near-field interaction between two QDs as a function of the inter-dot distance.

Fig. 3
Fig. 3

Evolutions of the populations of the radiation from QD S (dashed curve) and QD L (solid curve) with 150 fs-duration input pulse radiating both System A and System B. The energy dissipation in QD L is arranged to be (i) 2.5 meV, (ii) 17 μeV, and (iii) 0.25 μeV.

Fig. 4
Fig. 4

(a) Steady-state population involving energy level E L 1 in System A (squares) and System B as a function of the energy dissipation. For System B, three different cases are shown, with U B -1 of 500, 1,000, and 10,000 ps respectively indicated by , , and marks. (b) Energy dissipation as a function of error ratio regarding optical excitation transfer and classical electrically wired device (more specifically a CMOS logic gate) based on Ref [2]. The energy dissipation of optical excitation transfer is about 104 times lower than that in classical electrically wired devices. (c) As the optical near-field interaction time of System B decreases, the lower bound of the error ratio increases, indicating that the performance could be degraded with increasing integration density. The error ratio is evaluated as the number of independent functional blocks within an area of 1 μm2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H ^ i n t = d 3 r i , j = e , h ψ ^ i ( r ) e r · E ( r ) ψ ^ j ( r ) ,
E ( n x , n y , n z ) = E B + 2 π 2 2 M L 2 ( n x 2 + n y 2 + n z 2 ) ,
d ρ ( t ) d t = i [ H i n t + H e x t ( t ) , ρ ( t ) ] + γ S 2 ( 2 S ρ ( t ) S S S ρ ( t ) ρ ( t ) S S ) + Γ 2 ( 2 L 2 ρ ( t ) L 2 L 2 L 2 ρ ( t ) ρ ( t ) L 2 L 2 ) + γ L 2 ( 2 L 1 ρ ( t ) L 1 L 1 L 1 ρ ( t ) ρ ( t ) L 1 L 1 ) ,
H i n t = ( 0 0 0 0 0 0 0 0 0 0 0 U S L 1 e i ( Ω S Ω L 1 ) 0 0 0 0 0 0 0 U S L 2 e i ( Ω S Ω L 2 ) 0 0 0 0 0 U S L 1 e i ( Ω S Ω L 1 ) U S L 2 e i ( Ω S Ω L 2 ) 0 0 0 0 0 0 0 0 0 0 U S L 2 e i ( Ω S Ω L 2 ) U S L 1 e i ( Ω S Ω L 1 ) 0 0 0 0 0 U S L 2 e i ( Ω S Ω L 2 ) 0 0 0 0 0 0 0 U S L 1 e i ( Ω S Ω L 1 ) 0 0 0 0 0 0 0 0 0 0 0 ) ,
S = ( 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) , L 2 = ( 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) , L 1 = ( 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ) ,
H e x t ( t ) = g a t e ( t ) × [ ( exp ( i ( Ω S ω e x t ) S + exp ( i ( Ω S ω e x t ) S ) + ( exp ( i ( Ω L 1 ω e x t ) ) L 1 + exp ( i ( Ω L 1 ω e x t ) ) L 1 ) ] ,
U = A exp ( μ r ) r ,
E d = k B T ln ( 3 2 P E )

Metrics