Abstract

We report on the effect of arrays of Au nanopillars of controlled size and spacing on the spectral response of a P3HT: PCBM bulk heterojunction solar cell. Prototype nanopillar-patterned devices have nearly the same overall power conversion efficiency as those without nanopillars. The patterned devices do show higher external quantum efficiency and calculated absorption in the wavelength range from approximately 640 nm to 720 nm, where the active layer is not very absorbing. The peak enhancement was approximately 60% at 675 nm. We find evidence that the corresponding resonance involves both localized particle plasmon excitation and multiple reflections/diffraction within the cavity formed by the electrodes. We explore the role of the attenuation coefficient of the active layer on the optical absorption of such an organic photovoltaic device.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
    [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  3. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [CrossRef]
  4. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  5. V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  6. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  8. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  12. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
    [CrossRef]
  13. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [CrossRef]
  14. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
    [CrossRef]
  15. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
    [CrossRef]
  16. Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
    [CrossRef]
  17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
    [CrossRef]
  20. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  21. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
    [CrossRef]
  22. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
    [CrossRef]
  23. P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
    [CrossRef]
  24. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
    [CrossRef] [PubMed]
  25. I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
    [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. J. T. Rantala and A. H. O. Kärkkäinen, “Optical properties of spin-on deposited low temperature titanium oxide thin films,” Opt. Express 11(12), 1406–1410 (2003).
    [CrossRef] [PubMed]
  28. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.
  29. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  30. A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.
  31. P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [CrossRef]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

2009 (7)

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

2008 (7)

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (3)

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

2006 (2)

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2004 (2)

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2003 (1)

2002 (1)

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

2000 (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Ballarotto, M.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Bienstman, P.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Brabec, C. J.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Cao, W.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Cho, K.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Cho, S.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Dennler, G.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Du, M.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Guo, S. H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Hagglund, C.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Heeger, A. J.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Heineman, W. R.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Herman, W. N.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kärkkäinen, A. H. O.

Kasemo, B.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, J. S.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Kim, J. Y.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Kim, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, Y.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Lee, C. H.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Lee, D. Y.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Lee, J. H.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Lee, K.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Li, H.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Maes, B.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Park, D.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Park, J. H.

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Park, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

Petersson, G.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Phaneuf, R. J.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Rantala, J. T.

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Romero, D. B.

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Scharber, M. C.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

Schilinsky, P.

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Scully, S. R.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Seliskar, C. J.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Shen, H. H.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Simon, J. J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Szmacinski, H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Tenent, R. C.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

van de Lagemaat, J.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Waldauf, C.

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Zach, M.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Zudans, I.

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19(18), 2445–2449 (2007).
[CrossRef]

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[CrossRef]

Appl. Phys. Lett. (12)

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81(20), 3885 (2002).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Y. Kim, M. Ballarotto, D. Park, M. Du, W. Cao, C. H. Lee, W. N. Herman, and D. B. Romero, “Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91(19), 193510 (2007).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys. (3)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Nano Lett. (1)

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett. 9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Org. Electron. (1)

J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10(3), 416–420 (2009).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Transition-Metals - Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[CrossRef]

Thin Solid Films (1)

I. Zudans, W. R. Heineman, and C. J. Seliskar, “In situ measurements of chemical sensor film dynamics by spectroscopic ellipsometry. Three case studies,” Thin Solid Films 455-456, 710–715 (2004).
[CrossRef]

Other (2)

A. Neureuther, TEMPEST FDTD software developed by Univ. of California at Berkeley.

D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic Aluminum, ” in Handbook of Optical Constants of Solids, D. Palik, ed., (Academic Press, Orlando, 1985), pp. 369–406.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). Schematic cross section of nanopillar-patterned organic solar cell. (b). SEM image of Au nanopillar arrays on ITO surface; nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm.

Fig. 2
Fig. 2

(a). Measured external quantum efficiency (EQE) for the (unpatterned) control cell and nanopillar-patterned cells under zero bias. (b). Simulated absorbance for control and patterned cells. (c). Ratios between measured EQE (blue curve) and simulated |E|2 (black curve) for a nanopillar-patterned cell and those for a control cell.

Fig. 3
Fig. 3

(a). Simulated |E|2 image cutting though the center of Au nanopillar in patterned cell at peak of P3HT:PCBM absorption, but off resonance (575 nm wavelength). (b). Corresponding image on resonance (675 nm wavelength). (c). Simulated |E|2 image cutting though the center of Fe nanopillar in patterned cell on resonance (675 nm wavelength).

Fig. 4
Fig. 4

(a). |E|2 integrated over volume of P3HT:PCBM layer for Au NP-patterned cell. For this and following panels: nanopillar edge length 180 nm, pitch 540 nm, and height 70 nm, illumination is at 675 nm wavelength at normal incidence, blue curve is for a P3HT:PCBM layer thickness of 220 nm, green curve for 250 nm and red curve for 280 nm. (b). |E|2 integrated over volume of P3HT:PCBM layer for Fe NP-patterned cell illuminated with 675 nm wavelength light at normal incidence. (c). |E|2 integrated over volume of a 20 nm wide shell around an Au NP. (d). |E|2 integrated over volume of a 20 nm wide shell around a Fe NP.

Fig. 5
Fig. 5

(a). |E|2 images of the active layer cutting though the center of the Au nanopillars (dashed rectangles) in patterned cells for kA = 0.01 (upper panel), kA = 0.03 (middle panel) and kA = 0.8 (lower panel). (b). Calculated active layer absorption of the active layer with (pink curve) and without (black curve) NPs as function of its absorption coefficient (kA ) at an incident wavelength of 675 nm. (c). Difference between absorption of the patterned cell and that of the control cell. Insert: ratio of absorption of the patterned cell to that of the control cell.

Tables (1)

Tables Icon

Table 1 Measured short circuit current densities, open circuit voltages and fill factors for a standard BHJ OPV device including PEDOT:PSS (column (a)), a control device with neither PEDOT:PSS nor Au nanopillars (column (b)) and a Au nanopillar patterned device with no PEDOT:PSS layer (column (c)) under solar AM 1.5 G illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q A ( x , y , z ) = 2 π c ε o n A k A | E A ( x , y , z ) | 2 / λ

Metrics